912 resultados para Optics in computing
Resumo:
By means of a well-established algebraic framework, Rogers-Szego functions associated with a circular geometry in the complex plane are introduced in the context of q-special functions, and their properties are discussed in detail. The eigenfunctions related to the coherent and phase states emerge from this formalism as infinite expansions of Rogers-Szego functions, the coefficients being determined through proper eigenvalue equations in each situation. Furthermore, a complementary study on the Robertson-Schrodinger and symmetrical uncertainty relations for the cosine, sine and nondeformed number operators is also conducted, corroborating, in this way, certain features of q-deformed coherent states.
Resumo:
The recipe used to compute the symmetric energy-momentum tensor in the framework of ordinary field theory bears little resemblance to that used in the context of general relativity, if any. We show that if one stal ts fi om the field equations instead of the Lagrangian density, one obtains a unified algorithm for computing the symmetric energy-momentum tensor in the sense that it can be used for both usual field theory and general relativity.
Resumo:
We propose an analog model for quantum gravity effects using nonlinear dielectrics. Fluctuations of the spacetime lightcone are expected in quantum gravity, leading to variations in the flight times of pulses. This effect can also arise in a nonlinear material. We propose a model in which fluctuations of a background electric field, such as that produced by a squeezed photon state, can cause fluctuations in the effective lightcone for probe pulses. This leads to a variation in flight times analogous to that in quantum gravity. We make some numerical estimates which suggest that the effect might be large enough to be observable. © 2012 Elsevier Inc.
Resumo:
This paper develops a novel full analytic model for vibration analysis of solid-state electronic components. The model is just as accurate as finite element models and numerically light enough to permit for quick design trade-offs and statistical analysis. The paper shows the development of the model, comparison to finite elements and an application to a common engineering problem. A gull-wing flat pack component was selected as the benchmark test case, although the presented methodology is applicable to a wide range of component packages. Results showed very good agreement between the presented method and finite elements and demonstrated the usefulness of the method in how to use standard test data for a general application. © 2013 Elsevier Ltd.
Resumo:
Includes bibliography.
Resumo:
The technologies are rapidly developing, but some of them present in the computers, as for instance their processing capacity, are reaching their physical limits. It is up to quantum computation offer solutions to these limitations and issues that may arise. In the field of information security, encryption is of paramount importance, being then the development of quantum methods instead of the classics, given the computational power offered by quantum computing. In the quantum world, the physical states are interrelated, thus occurring phenomenon called entanglement. This study presents both a theoretical essay on the merits of quantum mechanics, computing, information, cryptography and quantum entropy, and some simulations, implementing in C language the effects of entropy of entanglement of photons in a data transmission, using Von Neumann entropy and Tsallis entropy.
Resumo:
The physics of plasmas encompasses basic problems from the universe and has assured us of promises in diverse applications to be implemented in a wider range of scientific and engineering domains, linked to most of the evolved and evolving fundamental problems. Substantial part of this domain could be described by R–D mechanisms involving two or more species (reaction–diffusion mechanisms). These could further account for the simultaneous non-linear effects of heating, diffusion and other related losses. We mention here that in laboratory scale experiments, a suitable combination of these processes is of vital importance and very much decisive to investigate and compute the net behaviour of plasmas under consideration. Plasmas are being used in the revolution of information processing, so we considered in this technical note a simple framework to discuss and pave the way for better formalisms and Informatics, dealing with diverse domains of science and technologies. The challenging and fascinating aspects of plasma physics is that it requires a great deal of insight in formulating the relevant design problems, which in turn require ingenuity and flexibility in choosing a particular set of mathematical (and/or experimental) tools to implement them.
Resumo:
Data-intensive Grid applications require huge data transfers between grid computing nodes. These computing nodes, where computing jobs are executed, are usually geographically separated. A grid network that employs optical wavelength division multiplexing (WDM) technology and optical switches to interconnect computing resources with dynamically provisioned multi-gigabit rate bandwidth lightpath is called a Lambda Grid network. A computing task may be executed on any one of several computing nodes which possesses the necessary resources. In order to reflect the reality in job scheduling, allocation of network resources for data transfer should be taken into consideration. However, few scheduling methods consider the communication contention on Lambda Grids. In this paper, we investigate the joint scheduling problem while considering both optical network and computing resources in a Lambda Grid network. The objective of our work is to maximize the total number of jobs that can be scheduled in a Lambda Grid network. An adaptive routing algorithm is proposed and implemented for accomplishing the communication tasks for every job submitted in the network. Four heuristics (FIFO, ESTF, LJF, RS) are implemented for job scheduling of the computational tasks. Simulation results prove the feasibility and efficiency of the proposed solution.