985 resultados para Optical bias control
Resumo:
A compact, fiber-based spectrometer for biomedical application utilizing a tilted fiber Bragg grating (TFBG) as integrated dispersive element is demonstrated. Based on a 45° UV-written PS750 TFBG a refractive spectrometer with 2.06 radiant/μm dispersion and a numerical aperture of 0.1 was set up and tested as integrated detector for an optical coherence tomography (OCT) system. Featuring a 23 mm long active region at the fiber the spectrum is projected via a cylindrical lens for vertical beam collimation and focused by an achromatic doublet onto the detector array. Covering 740 nm to 860 nm the spectrometer was optically connected to a broadband white light interferometer and a wide field scan head and electronically to an acquisition and control computer. Tomograms of ophthalmic and dermal samples obtained by the frequency domain OCT-system were obtained achieving 2.84 μm axial and 7.6 μm lateral resolution. © 2014 SPIE.
Resumo:
The innovation of optical frequency combs (OFCs) generated in passive mode-locked lasers has provided astronomy with unprecedented accuracy for wavelength calibration in high-resolution spectroscopy in research areas such as the discovery of exoplanets or the measurement of fundamental constants. The unique properties of OCFs, namely a highly dense spectrum of uniformly spaced emission lines of nearly equal intensity over the nominal wavelength range, is not only beneficial for high-resolution spectroscopy. Also in the low- to medium-resolution domain, the OFCs hold the promise to revolutionise the calibration techniques. Here, we present a novel method for generation of OFCs. As opposed to the mode-locked laser-based approach that can be complex, costly, and difficult to stabilise, we propose an all optical fibre-based system that is simple, compact, stable, and low-cost. Our system consists of three optical fibres where the first one is a conventional single-mode fibre, the second one is an erbium-doped fibre and the third one is a highly nonlinear low-dispersion fibre. The system is pumped by two equally intense continuous-wave (CW) lasers. To be able to control the quality and the bandwidth of the OFCs, it is crucial to understand how optical solitons arise out of the initial modulated CW field in the first fibre. Here, we numerically investigate the pulse evolution in the first fibre using the technique of the solitons radiation beat analysis. Having applied this technique, we realised that formation of higherorder solitons is supported in the low-energy region, whereas, in the high-energy region, Kuznetsov-Ma solitons appear.
Resumo:
In this paper, we describe recent architectural and technological advances of the end to end optical network architecture proposed by the DISCUS project (the DIStributed Core for unlimited bandwidth supply for all Users and Services). The two main targets of DISCUS are the principle of equivalence in the access and the reduction of optical-to-electronic conversions in the metro-core network. Technological advances and techno-economic evaluation of Long-Reach Passive Optical Networks (LR-PON), as well as the optimal metro-core node architecture and the required network control plane framework are reported. Network infrastructure sharing challenges are also discussed. © 2014 IEEE.
Resumo:
A fine control of the mPOF Bragg grating spectrum properties, such as maximum reflected power and 3dB bandwidth, through acousto-optic modulation (AOM) using flexural regime is presented. A numerical comparison of the strain field along mPOFBG - AOM and the similar structure with SMFBG-AOM was presented, showing that the strain field amplitude is higher along the mPOFBG due to its smaller mechanical stiffness. The obtained results can be used in the development of fine-tuned optical filters using low voltage sources and low frequency regimes, to obtain tunable optical filters and to control the shape of the spectrum. Studies of the behavior in different gratings (such as phase shifted and long period gratings) for photonic applications, such as tunable notch filters or tunable cavities, are in progress. It can potentially be applied on tunable optical filters for POF transmission. © 2012 IEEE.
Resumo:
Optical-phase conjugation nonlinearity compensation (OPC-NLC) in optical networks is evaluated using a built-in tool including self-channel and crosstalk channel interference effects. Though significant improvements are observed, a further refined launch power policy is required to fully take advantage of OPC-NLC capability.
Resumo:
In SNAP (Surface nanoscale axial photonics) resonators propagation of a slow whispering gallery mode along an optical fiber is controlled by nanoscale variation of the effective radius of the fiber [1]. Similar behavior can be realized in so - called nanobump microresonators in which the introduced variation of the effective radius is asymmetric, i.e. depends on the axial coordinate [2]. The possibilities of realization of such structures “on the fly” in an optical fiber by applying external electrostatic fields to it is discussed in this work. It is shown that local variations in effective radius of the fiber and in its refractive index caused by external electric fields can be large enough to observe SNAP structure - like behavior in an originally flat optical fiber. Theoretical estimations of the introduced refractive index and effective radius changes and results of finite element calculations are presented. Various effects are taken into account: electromechanical (piezoelectricity and electrostriction), electro-optical (Pockels and Kerr effects) and elasto-optical effect. Different initial fibre cross-sections are studied. The aspects of use of linear isotropic (such as silica) and non-linear anisotropic (such as lithium niobate) materials of the fiber are discussed. REFERENCES [1] M. Sumetsky, J. M. Fini, Opt. Exp. 19, 26470 (2011). [2] L. A. Kochkurov, M. Sumetsky, Opt. Lett. 40, 1430 (2015).
Resumo:
We present data on the development a new type of optical fibre polariser and the characterisation of its wavelength properties. The device is fashioned using a two step process. Firstly, a standard UV long period grating (LPG) with a period of 330μm is inscribed into hydrogenated SMF-28, followed by femtosecond laser ablation of a groove parallel to the fibre axis. The UV inscribed LPGs have inherently low birefringence. However, the removal of the cladding layer parallel to the location of the LPG within the fibre core (as a result the ablation) modifies the cladding modes that couple with the LPG. Furthermore, the groove breaks the fibre symmetry introducing a non-uniform stress profile across the fibre cross section leading to significant birefringence. We show that increasing the depth of the groove increases the birefringence, and this behaviour coupled with the ability to control the wavelength location of the LPGs attenuations peaks results in a polariser able to operate at almost any wavelength and birefringence. The maximum birefringence reported here as polarisation mode splitting was approximately 39±0.1nm with a polarisation loss of 10dB. © 2011 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).
Resumo:
In the framework of 1D Nonlinear Shrödinger Equation (NSE) we demonstrate how one can control the refractive angle of a fundamental soliton beam passing through an optical lattice, by adjusting either the shape of an individual waveguide or the relative positions of waveguides. Even for a single scatterer its shape has a nontrivial effect on the refraction direction. In the case of shallow modulation we provide an analytical description based of the effect on the soliton perturbation theory. When one considers a lattice of scatterers, there emanates an additional form factor in the radiation density (RD) of emitted waves referring to the wave-soliton beating and interference inside the lattice. We concentrate on the results for two cases: periodic lattice and disordered lattice of scattering shapes. © 2011 IEEE.
Resumo:
At the level of fundamental research, fibre lasers provide convenient and reproducible experimental settings for the study of a variety of nonlinear dynamical processes, while at the applied research level, pulses with different and optimised features – e.g., in terms of pulse duration, temporal and/or spectral intensity profile, energy, repetition rate and emission bandwidth – are sought with the general constraint of developing efficient cavity architectures. In this talk, we review our recent progress on the realisation of different regimes of pulse generation in passively mode-locked fibre lasers through control of the in-cavity propagation dynamics. We report on the possibility to achieve both parabolic self-similar and triangular pulse shaping in a mode-locked fibre laser via adjustment of the net normal dispersion and integrated gain of the cavity [1]. We also show that careful control of the gain/loss parameters of a net-normal dispersion laser cavity provides the means of achieving switching among Gaussian pulse, dissipative soliton and similariton pulse solutions in the cavity [2,3]. Furthermore, we report on our recent theoretical and experimental studies of pulse shaping by inclusion of an amplitude and phase spectral filter into the cavity of a laser. We numerically demonstrate that a mode-locked fibre laser can operate in dif- ferent pulse-generation regimes, including parabolic, flattop and triangular waveform generations, depending on the amplitude profile of the in-cavity spectral filter [4]. An application of technique using a flat-top spectral filter is demonstrated to achieve the direct generation of sinc-shaped optical Nyquist pulses of high quality and of a widely tuneable bandwidth from the laser [5]. We also report on a recently-developed versa- tile erbium-doped fibre laser, in which conventional soliton, dispersion-managed soli- ton (stretched-pulse) and dissipative soliton mode-locking regimes can be selectively and reliably targeted by programming different group-velocity dispersion profiles and bandwidths on an in-cavity programmable filter [6]. References: 1. S. Boscolo and S. K. Turitsyn, Phys. Rev. A 85, 043811 (2012). 2. J. Peng et al., Phys. Rev. A 86, 033808 (2012). 3. J. Peng, Opt. Express 24, 3046-3054 (2016). 4. S. Boscolo, C. Finot, H. Karakuzu, and P. Petropoulos, Opt. Lett. 39, 438-441 (2014). 5. S. Boscolo, C. Finot, and S. K. Turitsyn, IEEE Photon. J. 7, 7802008 (2015). 6. J. Peng and S. Boscolo, Sci. Rep. 6, 25995 (2016).
Resumo:
This dissertation reports experimental studies of nonlinear optical effects manifested by electromagnetically induced transparency (EIT) in cold Rb atoms. The cold Rb atoms are confined in a magneto-optic trap (MOT) obtained with the standard laser cooling and trapping technique. Because of the near zero Doppler shift and a high phase density, the cold Rb sample is well suited for studies of atomic coherence and interference and related applications, and the experiments can be compared quantitatively with theoretical calculations. It is shown that with EIT induced in the multi-level Rb system by laser fields, the linear absorption is suppressed and the nonlinear susceptibility is enhanced, which enables studies of nonlinear optics in the cold atoms with slow photons and at low light intensities. Three independent experiments are described and the experimental results are presented. First, an experimental method that can produce simultaneously co-propagating slow and fast light pulses is discussed and the experimental demonstration is reported. Second, it is shown that in a three-level Rb system coupled by multi-color laser fields, the multi-channel two-photon Raman transitions can be manipulated by the relative phase and frequency of a control laser field. Third, a scheme for all-optical switching near single photon levels is developed. The scheme is based on the phase-dependent multi-photon interference in a coherently coupled four-level system. The phase dependent multi-photon interference is observed and switching of a single light pulse by a control pulse containing ∼20 photons is demonstrated. These experimental studies reveal new phenomena manifested by quantum coherence and interference in cold atoms, contribute to the advancement of fundamental quantum optics and nonlinear optics at ultra-low light intensities, and may lead to the development of new techniques to control quantum states of atoms and photons, which will be useful for applications in quantum measurements and quantum photonic devices.
Resumo:
Integrated on-chip optical platforms enable high performance in applications of high-speed all-optical or electro-optical switching, wide-range multi-wavelength on-chip lasing for communication, and lab-on-chip optical sensing. Integrated optical resonators with high quality factor are a fundamental component in these applications. Periodic photonic structures (photonic crystals) exhibit a photonic band gap, which can be used to manipulate photons in a way similar to the control of electrons in semiconductor circuits. This makes it possible to create structures with radically improved optical properties. Compared to silicon, polymers offer a potentially inexpensive material platform with ease of fabrication at low temperatures and a wide range of material properties when doped with nanocrystals and other molecules. In this research work, several polymer periodic photonic structures are proposed and investigated to improve optical confinement and optical sensing. We developed a fast numerical method for calculating the quality factor of a photonic crystal slab (PhCS) cavity. The calculation is implemented via a 2D-FDTD method followed by a post-process for cavity surface energy radiation loss. Computational time is saved and good accuracy is demonstrated compared to other published methods. Also, we proposed a novel concept of slot-PhCS which enhanced the energy density 20 times compared to traditional PhCS. It combines both advantages of the slot waveguide and photonic crystal to localize the high energy density in the low index material. This property could increase the interaction between light and material embedded with nanoparticles like quantum dots for active device development. We also demonstrated a wide range bandgap based on a one dimensional waveguide distributed Bragg reflector with high coupling to optical waveguides enabling it to be easily integrated with other optical components on the chip. A flexible polymer (SU8) grating waveguide is proposed as a force sensor. The proposed sensor can monitor nN range forces through its spectral shift. Finally, quantum dot - doped SU8 polymer structures are demonstrated by optimizing spin coating and UV exposure. Clear patterns with high emission spectra proved the compatibility of the fabrication process for applications in optical amplification and lasing.
Resumo:
Dissolved organic carbon (DOC) concentration and dissolved organic matter (DOM) optical properties were analyzed along two estuarine river transects during the wet and dry seasons to better understand DOM dynamics and quantify mangrove inputs. A tidal study was performed to assess the impacts of tidal pumping on DOM transport. DOM in the estuaries showed non-conservative mixing indicative of mangrove-derived inputs. Similarly, fluorescence data suggest that some terrestrial humic-like components showed non-conservative behavior. An Everglades freshwater-derived fluorescent component, which is associated with soil inputs from the Northern Everglades, behaved conservatively. During the dry season, a protein-like component behaved conservatively until the mid-salinity range when non-conservative behavior due to degradation and/or loss was observed. The tidal study data suggests mangrove porewater inputs to the rivers following low tide. The differences in quantity of DOM exported by the Shark and Harney Rivers imply that geomorphology and tidal hydrology may be a dominant factor controlling the amount of DOM exported from the mangrove ecotone, where up to 21 % of the DOC is mangrove-derived. Additionally, nutrient concentrations and other temporal factors may control DOM export from the mangroves, particularly for the microbially derived fluorescent components, contributing to the seasonal differences. The wet and dry season fluxes of mangrove DOM from the Shark River is estimated as 0.27 × 109 mg C d−1 and 0.075 × 109 mg C d−1, respectively, and the Harney River is estimated as 1.9 × 109 mg C d−1 and 0.20 × 109 mg C d−1.
Resumo:
The discovery of High-Temperature Superconductors (HTSCs) has spurred the need for the fabrication of superconducting electronic devices able to match the performance of today's semiconductor devices. While there are several HTSCs in use today, YBaCuO7-x (YBCO) is the better characterized and more widely used material for small electronic applications. This thesis explores the fabrication of a Two-Terminal device with a superconductor and a painted on electrode as the terminals and a ferroelectric, BaTiO 3 (BTO), in between. The methods used to construct such a device and the challenges faced with the fabrication of a viable device will be examined. The ferroelectric layer of the devices that proved adequate for use were poled by the application of an electric field. Temperature Bias Poling used an applied field of 105V/cm at a temperature of approximately 135*C. High Potential Poling used an applied field of 106V/cm at room temperature (20*C). The devices were then tested for a change in their superconducting critical temperature, Tc. A shift of 1-2K in the Tc(onset) of YBCO was observed for Temperature Bias Poling and a shift of 2-6K for High Potential Poling. These are the first reported results of the field effect using BTO on YBCO. The mechanism involved in the shifting of Tc will be discussed along with possible applications.
Resumo:
The purpose of this study is to identify and analyze the basic causes of food service employee turnover in five selected restaurants in the Miami area. The withdrawal behavior in this study is treated in terms of controllable turnover, for the purpose of management, learning more about what action to take to solve this problem which has eaten into the fabric of the hospitality industry. The aim is to find out from the food service employees and management view of work for the purpose of identifying the variables which cause an employee to voluntarily leave a job. The objective is therefore, to analyze and describe the problem of labor turnover in these selected restaurants. Such description must precede efforts to arrive at solutions to the problem if these efforts are ever to be more than haphazard and superficial. Sigmund Freud once stated: "The true beginning of scientific activity consists in describing phenomena and only then in proceeding to group, classify and correlate them."1 The nature of the study is basically descriptive survey. Data is collected by the use of management questionnaire, food service employee questionnaire and finally employees job description index. The survey consisted of a series of well defined questions with open and closed endings dealing with employee with employee turnover. As Robert Ferber and P. J. Verdoom state in their book titled Research Method in Economics of Business: "Structured questionnaires, by supplying question formulations in very specific terms as well as the different possible answers are easier for the sample members to answer and also serve to reduce the danger of interviewer bias."2 The answers to the prepared questionnaire by sample members were then recorded. The results of the questionnaire responses were then compiled for presentation and analysis. 1 Julian Simon, Basic Research Methods in Social Science. Random House, New York, 1969, p.53. 2 Robert J. Ferber and P.J. Verdoon, Research Methods in Economics and Business, The McMillan Company, 1962, p. 20 9 .
Resumo:
A compiled set of in situ data is important to evaluate the quality of ocean-colour satellite-data records. Here we describe the data compiled for the validation of the ocean-colour products from the ESA Ocean Colour Climate Change Initiative (OC-CCI). The data were acquired from several sources (MOBY, BOUSSOLE, AERONET-OC, SeaBASS, NOMAD, MERMAID, AMT, ICES, HOT, GeP&CO), span between 1997 and 2012, and have a global distribution. Observations of the following variables were compiled: spectral remote-sensing reflectances, concentrations of chlorophyll a, spectral inherent optical properties and spectral diffuse attenuation coefficients. The data were from multi-project archives acquired via the open internet services or from individual projects, acquired directly from data providers. Methodologies were implemented for homogenisation, quality control and merging of all data. No changes were made to the original data, other than averaging of observations that were close in time and space, elimination of some points after quality control and conversion to a standard format. The final result is a merged table designed for validation of satellite-derived ocean-colour products and available in text format. Metadata of each in situ measurement (original source, cruise or experiment, principal investigator) were preserved throughout the work and made available in the final table. Using all the data in a validation exercise increases the number of matchups and enhances the representativeness of different marine regimes. By making available the metadata, it is also possible to analyse each set of data separately.