962 resultados para Operations Research


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Matemática - IBILCE

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Matemática - IBILCE

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work is quantified according to the ABEPRO areas, the number of works the Course Conclusion (TCCs) and Hours (CH) Course of Production Engineering, UNESP Guaratinguetá. Based on this quantification were found to be significant discrepancies between the TCCs and CH. Quality and Logistics observed for the larger discrepancies, with 26% and 17% of the number of TCCs, respectively. Both areas have only 6% of the time. They are also used data from researchers at the National Council of Scientific and Technological Development (CNPq) in the areas of Production Engineering. In the area of Quality and Logistics, the researchers account for 8% and 5%, respectively, but are most prominent researchers in the field of Operations Research, with 37%. However, this view can help the department to organize the curriculum, with the development of teaching projects, methods and means of education, and visibility to help future hiring for the department

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Operational Research (OR) is an eminent science to business competitiveness and the capacity of algorithms and spreadsheets that exist today allows people to apply them for a lower cost and with less complexity. However, spreadsheets linked to OR techniques, when directed to real problems, are still little explored in their full potential. In order to use them better, this article utilizes the Microsoft Office Excel to solve an optimization practical problem and decision-making of machining subcontracting. In general, although considered a frequent problem, is not of easy solution, optimize the mix of production versus outsourcing, because of the restrictions and resources available, it requests investments in specific software. In this way, this research aims to develop software to be called SOSU (Optimization Software for Machining Subcontracting). SOSU should introduce the best mix of internal and subcontracted machining for n types of parts that, over a certain period of time t, maximize capacity and meet all the demand at the lowest cost possible. The methodology adopted follows the bibliographic reference and it is assumed that the necessary data to prove from mathematical modeling of production areas and from a system of costs already structured. The nature of the problem justifies the application of Linear Programming (LP), Visual Basic for Applications (VBA) is used for computational implementation and interface with the user and the supplement Solver to find the solution. The analysis of the experiments show that the SOSU optimizes resources and improves the decision-making process, besides an easy operation, it can be implemented or quickly adapted and without the need of large investments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work aimed to develop an optimization methodology for reservoir sizing in rainwater harvesting systems in order to increase the economic viability of projects in this area. For this, concepts of Operations Research were used so as to develop mathematical programming problems related to minimizing the life cycle cost and maximizing efficiency. The results obtained for different sizing methods were presented based on a case study, emphasizing the importance of tools that are able to provide a more accurate analysis and tend to significantly increase the economic viability of rainwater harvesting systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

INVESTIGATION INTO CURRENT EFFICIENCY FOR PULSE ELECTROCHEMICAL MACHINING OF NICKEL ALLOY Yu Zhang, M.S. University of Nebraska, 2010 Adviser: Kamlakar P. Rajurkar Electrochemical machining (ECM) is a nontraditional manufacturing process that can machine difficult-to-cut materials. In ECM, material is removed by controlled electrochemical dissolution of an anodic workpiece in an electrochemical cell. ECM has extensive applications in automotive, petroleum, aerospace, textile, medical, and electronics industries. Improving current efficiency is a challenging task for any electro-physical or electrochemical machining processes. The current efficiency is defined as the ratio of the observed amount of metal dissolved to the theoretical amount predicted from Faradayâs law, for the same specified conditions of electrochemical equivalent, current, etc [1]. In macro ECM, electrolyte conductivity greatly influences the current efficiency of the process. Since there is a certain limit to enhance the conductivity of the electrolyte, a process innovation is needed for further improvement in current efficiency in ECM. Pulse electrochemical machining (PECM) is one such approach in which the electrolyte conductivity is improved by electrolyte flushing in pulse off-time. The aim of this research is to study the influence of major factors on current efficiency in a pulse electrochemical machining process in macro scale and to develop a linear regression model for predicting current efficiency of the process. An in-house designed electrochemical cell was used for machining nickel alloy (ASTM B435) by PECM. The effects of current density, type of electrolyte, and electrolyte flow rate, on current efficiency under different experimental conditions were studied. Results indicated that current efficiency is dependent on electrolyte, electrolyte flow rate, and current density. Linear regression models of current efficiency were compared with twenty new data points graphically and quantitatively. Models developed were close enough to the actual results to be reliable. In addition, an attempt has been made in this work to consider those factors in PECM that have not been investigated in earlier works. This was done by simulating the process by using COMSOL software. However, it was found that the results from this attempt were not substantially different from the earlier reported studies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

PREPARATION OF COATED MICROTOOLS FOR ELECTROCHEMICAL MACHINING APPLICATIONS Ajaya K. Swain, M.S. University of Nebraska, 2010 Advisor: K.P. Rajurkar Coated tools have improved the performance of both traditional and nontraditional machining processes and have resulted in higher material removal, better surface finish, and increased wear resistance. However, a study on the performance of coated tools in micromachining has not yet been adequately conducted. One possible reason is the difficulties associated with the preparation of coated microtools. Besides the technical requirement, economic and environmental aspects of the material and the coating technique used also play a significant role in coating microtools. This, in fact, restricts the range of coating materials and the type of coating process. Handling is another major issue in case of microtools purely because of their miniature size. This research focuses on the preparation of coated microtools for pulse electrochemical machining by electrodeposition. The motivation of this research is derived from the fact that although there were reports of improved machining by using insulating coatings on ECM tools, particularly in ECM drilling operations, not much literature was found relating to use of metallic coating materials in other ECM process types. An ideal ECM tool should be good thermal and electrical conductor, corrosion resistant, electrochemically stable, and stiff enough to withstand electrolyte pressure. Tungsten has almost all the properties desired in an ECM tool material except being electrochemically unstable. Tungsten can be oxidized during machining resulting in poor machining quality. Electrochemical stability of a tungsten ECM tool can be improved by electroplating it with nickel which has superior electrochemical resistance. Moreover, a tungsten tool can be coated in situ reducing the tool handling and breakage frequency. The tungsten microtool was electroplated with nickel with direct and pulse current. The effect of the various input parameters on the coating characteristics was studied and performance of the coated microtool was evaluated in pulse ECM. The coated tool removed more material (about 28%) than the uncoated tool under similar conditions and was more electrochemical stable. It was concluded that nickel coated tungsten microtool can improve the pulse ECM performance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Real Options Analysis (ROA) has become a complimentary tool for engineering economics. It has become popular due to the limitations of conventional engineering valuation methods; specifically, the assumptions of uncertainty. Industry is seeking to quantify the value of engineering investments with uncertainty. One problem with conventional tools are that they may assume that cash flows are certain, therefore minimizing the possibility of the uncertainty of future values. Real options analysis provides a solution to this problem, but has been used sparingly by practitioners. This paper seeks to provide a new model, referred to as the Beta Distribution Real Options Pricing Model (BDROP), which addresses these limitations and can be easily used by practitioners. The positive attributes of this new model include unconstrained market assumptions, robust representation of the underlying assetâŸs uncertainty, and an uncomplicated methodology. This research demonstrates the use of the model to evaluate the use of automation for inventory control.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Factor analysis was used to develop a more detailed description of the human hand to be used in the creation of glove sizes; currently gloves sizes are small, medium, and large. The created glove sizes provide glove designers with the ability to create a glove design that can provide fit to the majority of hand variations in both the male and female populations. The research used the American National Survey (ANSUR) data that was collected in 1988. This data contains eighty-six length, width, height, and circumference measurements of the human hand for one thousand male subjects and thirteen hundred female subjects. Eliminating redundant measurements reduced the data to forty-six essential measurements. Factor analysis grouped the variables to form three factors. The factors were used to generate hand sizes by using percentiles along each factor axis. Two different sizing systems were created. The first system contains 125 sizes for male and female. The second system contains 7 sizes for males and 14 sizes for females. The sizing systems were compared to another hand sizing system that was created using the ANSUR database indicating that the systems created using factor analysis provide better fit.