962 resultados para Oncogenic viruses
Resumo:
About 60% of human infections diseases are caused by viruses,including such important diseases as AIDS, polio, rabies and certain forms of cancer. A few groups of viruses are important to optometrists because they either cause a primary eye infection or a systemic viral infection with ocular complications.
Resumo:
Aberrant regulation of the Wnt signalling pathway is a recurrent theme in cancer biology. Hyper activation due to oncogenic mutations and paracrine activity has been found in both colon cancer and breast cancer, and continues to evolve as a central mechanism in oncogenesis. PDLIM2, a cytoskeletal PDZ protein, is an IGF-1 regulated gene that is highly expressed in cancer cell lines derived from metastatic tumours. Suppression of PDLIM2 inhibits polarized cell migration, reverses the Epithelial to Mesenchymal transition (EMT) phenotype, suppresses the transcription of β-catenin target genes, and regulates gene expression of key transcription factors in EMT. This thesis investigates the mechanism by which PDLIM2 contributes to the maintenance of Wnt signalling in cancer cells. Here we show that PDLIM2 is a critical regulator of the Wnt pathway by regulating β-catenin at the adherens juctions, as also its transcriptional activity by the interaction of PDLIM2 with TCF4 at the nucleus. Evaluation of PDLIM2 in macrophages and co-culture studies with cancer cells and fibroblasts showed the influence exerted on PDLIM2 by paracrine cues. Thus, PDLIM2 integrates cytoskeleton signalling with gene expression by modulating the Wnt signalling pathway and reconciling microenvironmental cues with signals in epithelial cells. Negative correlation of mRNA and protein levels in the triple negative breast cancer cell BT549 suggests that PDLIM2 is part of a more complex mechanism that involves transcription and posttranslational modifications. GST pulldown studies and subsequent mass spectrometry analysis showed that PDLIM2 interacts with 300 proteins, with a high biological function in protein biosynthesis and Ubiquitin/proteasome pathways, including 13 E3 ligases. Overall, these data suggest that PDLIM2 has two distinct functions depending of its location. Located at the cytoplasm mediates cytoskeletal re-arrangements, whereas at the nucleus PDLIM2 acts as a signal transduction adaptor protein mediating transcription and ubiquitination of key transcription factors in cancer development.
Resumo:
The transmission of water-borne pathogens typically occurs by a faecal–oral route, through inhalation of aerosols, or by direct or indirect contact with contaminated water. Previous molecular-based studies have identified viral particles of zoonotic and human nature in surface waters. Contaminated water can lead to human health issues, and the development of rapid methods for the detection of pathogenic microorganisms is a valuable tool for the prevention of their spread. The aims of this work were to determine the presence and identity of representative human pathogenic enteric viruses in water samples from six European countries by quantitative polymerase chain reaction (q-PCR) and to develop two quantitative PCR methods for Adenovirus 41 and Mammalian Orthoreoviruses. A 2-year survey showed that Norovirus, Mammalian Orthoreovirus and Adenoviruses were the most frequently identified enteric viruses in the sampled surface waters. Although it was not possible to establish viability and infectivity of the viruses considered, the detectable presence of pathogenic viruses may represent a potential risk for human health. The methodology developed may aid in rapid detection of these pathogens for monitoring
Resumo:
The transmission of water-borne pathogens typically occurs by a faecal–oral route, through inhalation of aerosols, or by direct or indirect contact with contaminated water. Previous molecular-based studies have identified viral particles of zoonotic and human nature in surface waters. Contaminated water can lead to human health issues, and the development of rapid methods for the detection of pathogenic microorganisms is a valuable tool for the prevention of their spread. The aims of this work were to determine the presence and identity of representative human pathogenic enteric viruses in water samples from six European countries by quantitative polymerase chain reaction (q-PCR) and to develop two quantitative PCR methods for Adenovirus 41 and Mammalian Orthoreoviruses. A 2-year survey showed that Norovirus, Mammalian Orthoreovirus and Adenoviruses were the most frequently identified enteric viruses in the sampled surface waters. Although it was not possible to establish viability and infectivity of the viruses considered, the detectable presence of pathogenic viruses may represent a potential risk for human health. The methodology developed may aid in rapid detection of these pathogens for monitoring
Resumo:
Runting-stunting syndrome (RSS) in broiler chickens is an enteric disease that causes significant economic losses to poultry producers worldwide due to elevated feed conversion ratios, decreased body weight during growth, and excessive culling. Of specific interest are the viral agents associated with RSS which have been difficult to fully characterise to date. Past research into the aetiology of RSS has implicated a wide variety of RNA and DNA viruses however, to date, no individual virus has been identified as the main agent of RSS and the current opinion is that it may be caused by a community of viruses, collectively known as the virome. This paper attempts to characterise the viral pathogens associated with 2 – 3 week old RSS-affected and unaffected broiler chickens using next-generation sequencing and comparative metagenomics. Analysis of the viromes identified a total of 20 DNA & RNA viral families, along with 2 unidentified categories, comprised of 31 distinct viral genera and 7 unclassified genera. The most abundant viral families identified in this study were the Astroviridae, Caliciviridae, Picornaviridae, Parvoviridae, Coronaviridae, Siphoviridae, and Myoviridae. This study has identified historically significant viruses associated with the disease such as chicken astrovirus, avian nephritis virus, chicken parvovirus, and chicken calicivirus along with relatively novel viruses such as chicken megrivirus and sicinivirus 1 and will help expand the knowledge related to enteric disease in broiler chickens, provide insights into the viral constituents of a healthy avian gut, and identify a variety of enteric viruses and viral communities appropriate for further study.
Resumo:
Androgen receptor (AR) signaling is a key driver of prostate cancer (PC). While androgen-deprivation therapy is transiently effective in advanced disease, tumors often progress to a lethal castration-resistant state (CRPC). We show that recurrent PC-driver mutations in speckle-type POZ protein (SPOP) stabilize the TRIM24 protein, which promotes proliferation under low androgen conditions. TRIM24 augments AR signaling, and AR and TRIM24 co-activated genes are significantly upregulated in CRPC. Expression of TRIM24 protein increases from primary PC to CRPC, and both TRIM24 protein levels and the AR/TRIM24 gene signature predict disease recurrence. Analyses in CRPC cells reveal that the TRIM24 bromodomain and the AR-interacting motif are essential to support proliferation. These data provide a rationale for therapeutic TRIM24 targeting in SPOP mutant and CRPC patients.
Resumo:
Acute myeloid leukemia (AML) is mostly driven by oncogenic transcription factors, which have been classically viewed as intractable targets using small molecule inhibitor approaches. Here, we demonstrate that AML driven by repressive transcription factors including AML1-ETO and PML-RARα are extremely sensitive to Poly (ADP-ribose) Polymerase (PARP) inhibitor (PARPi), in part due to their suppressed expression of key homologous recombination genes and thus compromised DNA damage response (DDR). In contrast, leukemia driven by MLL fusions with dominant transactivation ability is proficient in DDR and insensitive to PARP inhibition. Intriguing, depletion of an MLL downstream target, Hoxa9 that activates expression of various HR genes, impairs DDR and sensitizes MLL leukemia to PARPi. Conversely, Hoxa9 over-expression confers PARPi resistance to AML1-ETO and PML-RARα transformed cells. Together, these studies describe a potential utility of PARPi-induced synthetic lethality for leukemia treatment and reveal a novel molecular mechanism governing PARPi sensitivity in AML.
Associations between exposure to viruses and bovine respiratory disease in Australian feedlot cattle
Resumo:
Bovine respiratory disease (BRD) is the most important cause of clinical disease and death in feedlot cattle. Respiratory viral infections are key components in predisposing cattle to the development of this disease. To quantify the contribution of four viruses commonly associated with BRD, a case-control study was conducted nested within the National Bovine Respiratory Disease Initiative project population in Australian feedlot cattle. Effects of exposure to Bovine viral diarrhoea virus 1 (BVDV-1), Bovine herpesvirus 1 (BoHV-1), Bovine respiratory syncytial virus (BRSV) and Bovine parainfluenza virus 3 (BPIV-3), and to combinations of these viruses, were investigated. Based on weighted seroprevalences at induction (when animals were enrolled and initial samples collected), the percentages of the project population estimated to be seropositive were 24% for BoHV-1, 69% for BVDV-1, 89% for BRSV and 91% for BPIV-3. For each of the four viruses, seropositivity at induction was associated with reduced risk of BRD (OR: 0.6–0.9), and seroincrease from induction to second blood sampling (35–60 days after induction) was associated with increased risk of BRD (OR: 1.3–1.5). Compared to animals that were seropositive for all four viruses at induction, animals were at progressively increased risk with increasing number of viruses for which they were seronegative; those seronegative for all four viruses were at greatest risk (OR: 2.4). Animals that seroincreased for one or more viruses from induction to second blood sampling were at increased risk (OR: 1.4–2.1) of BRD compared to animals that did not seroincrease for any viruses. Collectively these results confirm that prior exposure to these viruses is protective while exposure at or after feedlot entry increases the risk of development of BRD in feedlots. However, the modest increases in risk associated with seroincrease for each virus separately, and the progressive increases in risk with multiple viral exposures highlights the importance of concurrent infections in the aetiology of the BRD complex. These findings indicate that, while efficacious vaccines could aid in the control of BRD, vaccination against one of these viruses would not have large effects on population BRD incidence but vaccination against multiple viruses would be expected to result in greater reductions in incidence. The findings also confirm the multifactorial nature of BRD development, and indicate that multifaceted approaches in addition to efficacious vaccines against viruses will be required for substantial reductions in BRD incidence.
Resumo:
Turnip crinkle virus (TCV) and Pea enation mosaic virus (PEMV) are two positive (+)-strand RNA viruses that are used to investigate the regulation of translation and replication due to their small size and simple genomes. Both viruses contain cap-independent translation elements (CITEs) within their 3´ untranslated regions (UTRs) that fold into tRNA-shaped structures (TSS) according to nuclear magnetic resonance and small angle x-ray scattering analysis (TCV) and computational prediction (PEMV). Specifically, the TCV TSS can directly associate with ribosomes and participates in RNA-dependent RNA polymerase (RdRp) binding. The PEMV kissing-loop TSS (kl-TSS) can simultaneously bind to ribosomes and associate with the 5´ UTR of the viral genome. Mutational analysis and chemical structure probing methods provide great insight into the function and secondary structure of the two 3´ CITEs. However, lack of 3-D structural information has limited our understanding of their functional dynamics. Here, I report the folding dynamics for the TCV TSS using optical tweezers (OT), a single molecule technique. My study of the unfolding/folding pathways for the TCV TSS has provided an unexpected unfolding pathway, confirmed the presence of Ψ3 and hairpin elements, and suggested an interconnection between the hairpins and pseudoknots. In addition, this study has demonstrated the importance of the adjacent upstream adenylate-rich sequence for the formation of H4a/Ψ3 along with the contribution of magnesium to the stability of the TCV TSS. In my second project, I report on the structural analysis of the PEMV kl-TSS using NMR and SAXS. This study has re-confirmed the base-pair pattern for the PEMV kl-TSS and the proposed interaction of the PEMV kl-TSS with its interacting partner, hairpin 5H2. The molecular envelope of the kl-TSS built from SAXS analysis suggests the kl-TSS has two functional conformations, one of which has a different shape from the previously predicted tRNA-shaped form. Along with applying biophysical methods to study the structural folding dynamics of RNAs, I have also developed a technique that improves the production of large quantities of recombinant RNAs in vivo for NMR study. In this project, I report using the wild-type and mutant E.coli strains to produce cost-effective, site-specific labeled, recombinant RNAs. This technique was validated with four representative RNAs of different sizes and complexity to produce milligram amounts of RNAs. The benefit of using site-specific labeled RNAs made from E.coli was demonstrated with several NMR techniques.
Resumo:
Monocarboxylate Transporter 2 (MCT2) is a major pyruvate transporter encoded by the SLC16A7 gene. Recent studies pointed to a consistent overexpression of MCT2 in prostate cancer (PCa) suggesting MCT2 as a putative biomarker and molecular target. Despite the importance of this observation the mechanisms involved in MCT2 regulation are unknown. Through an integrative analysis we have discovered that selective demethylation of an internal SLC16A7/MCT2 promoter is a recurrent event in independent PCa cohorts. This demethylation is associated with expression of isoforms differing only in 5'-UTR translational control motifs, providing one contributing mechanism for MCT2 protein overexpression in PCa. Genes co-expressed with SLC16A7/MCT2 also clustered in oncogenic-related pathways and effectors of these signalling pathways were found to bind at the SLC16A7/MCT2 gene locus. Finally, MCT2 knock-down attenuated the growth of PCa cells. The present study unveils an unexpected epigenetic regulation of SLC16A7/MCT2 isoforms and identifies a link between SLC16A7/MCT2, Androgen Receptor (AR), ETS-related gene (ERG) and other oncogenic pathways in PCa. These results underscore the importance of combining data from epigenetic, transcriptomic and protein level changes to allow more comprehensive insights into the mechanisms underlying protein expression, that in our case provide additional weight to MCT2 as a candidate biomarker and molecular target in PCa.
Resumo:
Purpose: To identify effective molecular diagnostic methods for oral squamous cell carcinoma (OSCC) to facilitate treatment of the disease in its initial stages. Methods: To identify molecular markers, OSCC tissue samples were collected from cancer patients and healthy controls. CD44+ cells were sorted using quantitative real-time polymerase chain reaction (qRT-PCR). Immunohistochemistry and immunostaining experiments were performed to identify markers for OSCC. Results: The qRT-PCR data confirmed the presence of oncogenic miR-155 in the OSCC samples. The immunohistochemical and immunostaining results confirmed the expression of Oct-4, an important target for the early diagnosis of OSCC, in oncogenic miR-155-positive OSCCs. Conclusion: Detection of the expression of miR-155 and Oct-4, which are key molecular markers, may be useful in improving the early diagnosis of OSCC.
Resumo:
The situation in Europe concerning honeybees has in recent years become increasingly aggravated with steady decline in populations and/or catastrophic winter losses. This has largely been attributed to the occurrence of a variety of known and "unknown", emerging novel diseases. Previous studies have demonstrated that colonies often can harbour more than one pathogen, making identification of etiological agents with classical methods difficult. By employing an unbiased metagenomic approach, which allows the detection of both unexpected and previously unknown infectious agents, the detection of three viruses, Aphid Lethal Paralysis Virus (ALPV), Israel Acute Paralysis Virus (IAPV), and Lake Sinai Virus (LSV), in honeybees from Spain is reported in this article. The existence of a subgroup of ALPV with the ability to infect bees was only recently reported and this is the first identification of such a strain in Europe. Similarly, LSV appear to be a still unclassified group of viruses with unclear impact on colony health and these viruses have not previously been identified outside of the United States. Furthermore, our study also reveals that these bees carried a plant virus, Turnip Ringspot Virus (TuRSV), potentially serving as important vector organisms. Taken together, these results demonstrate the new possibilities opened up by high-throughput sequencing and metagenomic analysis to study emerging new diseases in domestic and wild animal populations, including honeybees.
Resumo:
Several factors have recently converged, elevating the need for highly parallel diagnostic platforms that have the ability to detect many known, novel, and emerging pathogenic agents simultaneously. Panviral DNA microarrays represent the most robust approach for massively parallel viral surveillance and detection. The Virochip is a panviral DNA microarray that is capable of detecting all known viruses, as well as novel viruses related to known viral families, in a single assay and has been used to successfully identify known and novel viral agents in clinical human specimens. However, the usefulness and the sensitivity of the Virochip platform have not been tested on a set of clinical veterinary specimens with the high degree of genetic variance that is frequently observed with swine virus field isolates. In this report, we investigate the utility and sensitivity of the Virochip to positively detect swine viruses in both cell culture-derived samples and clinical swine samples. The Virochip successfully detected porcine reproductive and respiratory syndrome virus (PRRSV) in serum containing 6.10 × 10(2) viral copies per microliter and influenza A virus in lung lavage fluid containing 2.08 × 10(6) viral copies per microliter. The Virochip also successfully detected porcine circovirus type 2 (PCV2) in serum containing 2.50 × 10(8) viral copies per microliter and porcine respiratory coronavirus (PRCV) in turbinate tissue homogenate. Collectively, the data in this report demonstrate that the Virochip can successfully detect pathogenic viruses frequently found in swine in a variety of solid and liquid specimens, such as turbinate tissue homogenate and lung lavage fluid, as well as antemortem samples, such as serum.
Resumo:
Abstract Grapevine leafroll disease is associated with several species of phloem-limited grapevine leafrollassociated viruses (GLRaV), some of which are transmitted by mealybugs and scale insects. The grape phylloxera, Daktulosphaira vitifoliae (Fitch) Biotype A (Hemiptera: Phylloxeridae), is a common vineyard pest that feeds on the phloem of vine roots. There is concern that these insects may transmit one or more GLRaV species, particularly GLRaV-2, a species in the genus Closterovirus. A field survey was performed in vineyards with a high incidence of grapevine leafroll disease and D. vitifoliae was assessed for acquisition of GLRaV. In greenhouse experiments, the ability of D. vitifoliae to transmit GLRaV from infected root sections or vines to co-planted virus-free recipient vines was tested. There were no GLRaV-positive D. vitifoliae in the field survey, nor did D. vitifoliae transmit GLRaV- 1, ?2, ?3, or -4LV in greenhouse transmission experiments. Some insects tested positive for GLRaV after feeding on infected source vines in the greenhouse, however there was no evidence of virus transmission to healthy plants. These findings, in combination with the sedentary behaviour of the soil biotype of D. vitifoliae, make it unlikely that D. vitifoliae is a vector of any GLRaV.
Resumo:
Banana bunchy top is regarded as the most important viral disease of banana, causing significant yield losses worldwide. The disease is caused by Banana bunchy top virus (BBTV), which is a circular ssDNA virus belonging to the genus Babuvirus in the family Nanoviridae. There are currently few effective control strategies for this and other ssDNA viruses. “In Plant Activation” (InPAct) is a novel technology being developed at QUT for ssDNA virus-activated suicide gene expression. The technology exploits the rolling circle replication mechanism of ssDNA viruses and is based on a unique “split” gene design such that suicide gene expression is only activated in the presence of the viral Rep. This PhD project aimed to develop a BBTV-based InPAct system as a suicide gene strategy to control BBTV. The BBTV-based InPAct vector design requires a BBTV intergenic region (IR) to be embedded within an intron in the gene expression cassette. To ensure that the BBTV IR would not interfere with intron splicing, a TEST vector was initially generated that contained the entire BBTV IR embedded within an intron in a β-glucuronidase (GUS) expression vector. Transient GUS assays in banana embryogenic cell suspensions indicated that cryptic intron splice sites were present within the IR. Transcript analysis revealed two cryptic intron splice sites in the Domain III sequence of the CR-M within the IR. Removal of the CR-M from the TEST vector resulted in an enhancement of GUS expression suggesting that the cryptic intron splice sites had been removed. An InPAct GUS vector was subsequently generated that contained the modified BBTV IR, with the CR-M (minus Domain III) repositioned within the InPAct cassette. Using transient histochemical and fluorometric GUS assays in banana embryogenic cells, the InPAct GUS vector was shown to be activated in the presence of the BBTV Rep. However, the presence of both BBTV Rep and Clink was shown to have a deleterious effect on GUS expression suggesting that these proteins were cytotoxic at the levels expressed. Analysis of replication of the InPAct vectors by Southern hybridisation revealed low levels of InPAct cassette-based episomal DNA released from the vector through the nicking/ligation activity of BBTV Rep. However, Rep-mediated episomal replicons, indicative of rolling circle replication of the released circularised cassettes, were not observed. The inability of the InPAct cassette to be replicated was further investigated. To examine whether the absence of Domain III of the CR-M was responsible, a suite of modified BBTV-based InPAct GUS vectors was constructed that contained the CR-M with the inclusion of Domain III, the CR-M with the inclusion of Domain III and additional upstream IR sequence, or no CR-M. Analysis of replication by Southern hybridisation revealed that neither the presence of Domain III, nor the entire CR-M, had an effect on replication levels. Since the InPAct cassette was significantly larger than the native BBTV genomic components (approximately 1 kb), the effect of InPAct cassette size on replication was also investigated. A suite of size variant BBTV-based vectors was constructed that increased the size of a replication competent cassette to 1.1 kbp through to 2.1 kbp.. Analysis of replication by Southern hybridisation revealed that an increase in vector size above approximately 1.5 - 1.7 kbp resulted in a decrease in replication. Following the demonstration of Rep-mediated release, circularisation and expression from the InPAct GUS vector, an InPAct vector was generated in which the uidA reporter gene was replaced with the ribonuclease-encoding suicide gene, barnase. Initially, a TEST vector was generated to assess the cytotoxicity of Barnase on banana cells. Although transient assays revealed a Barnase-induced cytotoxic effect in banana cells, the expression levels were sub-optimal. An InPAct BARNASE vector was generated and tested for BBTV Rep-activated Barnase expression using transient assays in banana embryogenic cells. High levels of background expression from the InPAct BARNASE vector made it difficult to accurately assess Rep-activated Barnase expression. Analysis of replication by Southern hybridisation revealed low levels of InPAct cassette-based episomal DNA released from the vector but no Rep-mediated episomal replicons indicative of rolling circle replication of the released circularised cassettes were again observed. Despite the inability of the InPAct vectors to replicate to enable high level gene expression, the InPAct BARNASE vector was assessed in planta for BBTV Rep-mediated activation of Barnase expression. Eleven lines of transgenic InPAct BARNASE banana plants were generated by Agrobacterium-mediated transformation and were challenged with viruliferous Pentalonia nigronervosa. At least one clonal plant in each line developed bunchy top symptoms and infection was confirmed by PCR. No localised lesions were observed on any plants, nor was there any localised GUS expression in the one InPAct GUS line challenged with viruliferous aphids. The results presented in this thesis are the first study towards the development of a BBTV-based InPAct system as a Rep-activatable suicide gene expression system to control BBTV. Although further optimisation of the vectors is necessary, the preliminary results suggest that this approach has the potential to be an effective control strategy for BBTV. The use of iterons within the InPAct vectors that are recognised by Reps from different ssDNA plant viruses may provide a broad-spectrum resistance strategy against multiple ssDNA plant viruses. Further, this technology holds great promise as a platform technology for the molecular farming of high-value proteins in vitro or in vivo through expression of the ssDNA virus Rep protein.