687 resultados para Omega-3 fatty acids
Resumo:
The aim of this study was to establish the relationships between faecal fat concentration and gaseous emissions from pig slurry. Five diets were designed to meet essential nutrient requirements: a control and four experimental feeds including two levels (35 or 70 g/kg) of calcium soap fatty acids distillate (CSP) and 0 or 200 g/kg of orange pulp (OP) combined in a 2 × 2 factorial structure. Thirty growing pigs (six per treatment) were used to measure dry matter (DM) and N balance, coefficients of total tract apparent digestibility (CTTAD) of nutrients, faecal and urine composition and potential emissions of ammonia (NH3) and methane (CH4). Increasing dietary CSP level decreased DM, ether extract (EE) and crude protein (CP) CTTAD (by 4.0, 11.1 and 3.5%, respectively, P < 0.05), but did not influence those of fibrous constituents. It also led to a decrease (from 475 to 412 g/kg DM, P < 0.001) of faecal concentration of neutral detergent fibre (aNDFom) and to an increment (from 138 to 204 g/kg, P < 0.001) of EE in faecal DM that was related to greater CH4 emissions, both per gram of organic matter (P = 0.021) or on a daily basis (P < 0.001). Level of CSP did not affect N content in faeces or urine, but increased daily DM (P < 0.001), and N (P = 0.031) faecal excretion with no effect on urine N excretion. This resulted in lesser (P = 0.036) NH3 potential emission per kg of slurry. Addition of OP decreased CTTAD of EE (by 7.9%, P = 0.044), but increased (P < 0.05) that of all the fibrous fractions. As a consequence, faecal EE content increased (from 165 to 177 g/kg DM; P = 0.012), and aNDFom decreased greatly (from 483 to 404 g/kg DM, P < 0.001), which in all resulted in a lack of effect of OP on CH4 potential emission. Inclusion of OP in the diet also led to a significant decrease of CP CTTAD (by 6.85%, P < 0.001), and to an increase of faecal CP concentration (from 174 to 226 g/kg DM, P < 0.001), with no significant influence on urine N content. These effects resulted in higher N faecal losses, especially those of the undigested dietary origin, without significant effects on potential NH3 emission. No significant interactions between CSP and OP supplementation were observed for the gaseous emissions measured.
Resumo:
The metabolism of xenobiotics has mainly been investigated in higher plant species. We studied them in various marine macroalgae of the phyla Chlorophyta, Chromophyta, and Rhodophyta. Microsomes contained high oxidative activities for known cytochrome (Cyt) P450 substrates (fatty acids, cinnamic acid, 3- and 4-chlorobiphenyl, 2,3-dichlorobiphenyl, and isoproturon; up to 54 pkat/mg protein). The presence of Cyt P450 (approximately 50 pmol/mg protein) in microsomes of the three algal families was demonstrated by CO-difference absorption spectra. Intact algal tissue converted 3-chlorobiphenyl to the same monohydroxy-metabolite formed in vitro. This conversion was 5-fold stimulated upon addition of phenobarbital, and was abolished by the known P450 inhibitor, 1-aminobenzotriazole. It is concluded that marine macroalgae contain active species of Cyt P450 and could act as a metabolic sink for marine pollutants.
Resumo:
The effects of free polyunsaturated fatty acids (PUFA) on the binding of ligands to receptors on voltage-sensitive Na+ channels of neonatal rat cardiac myocytes were assessed. The radioligand was [benzoyl-2,5-(3)H] batrachotoxinin A 20alpha-benzoate ([(3)H]BTXB), a toxin that binds to the Na+ channel. The PUFA that have been shown to be antiarrhythmic, including eicosapentaenoic acid (EPA; C20:5n-3), docosahexaenoic acid (DHA; C22:6n-3), eicosatetraynoic acid (ETYA), linolenic acid (C18:3n-3), and linoleic acid (C18:2n-6), inhibited [(3)H]BTXB binding in a dose-dependent fashion with IC50 values of 28-35 microM, whereas those fatty acids that have no antiarrhythmic effects including saturated fatty acid (stearic acid, C18:0), monounsaturated fatty acid (oleic acid; C18:1n-9), and EPA methyl ester did not have a significant effect on [(3)H]BTXB binding. Enrichment of the myocyte membrane with cholesterol neither affected [(3)H]BTXB binding when compared with control cells nor altered the inhibitory effects of PUFA on [(3)H]BTXB binding. Scatchard analysis of [(3)H]BTXB binding showed that EPA reduced the maximal binding without altering the Kd for [(3)H]BTXB binding, indicating allosteric inhibition. The inhibition by EPA of [(3)H]BTXB binding was reversible (within 30 min) when delipidated bovine serum albumin was added. The binding of the PUFA to this site on the Na+ channel is reversible and structure-specific and occurs at concentrations close to those required for apparent antiarrhythmic effects and a blocking effect on the Na+ current, suggesting that binding of the PUFA at this site relates to their antiarrhythmic action.
Resumo:
Recent evidence indicates that polyunsaturated long-chain fatty acids (PUFAs) prevent lethal ischemia-induced cardiac arrhythmias in animals and probably in humans. To increase understanding of the mechanism(s) of this phenomenon, the effects of PUFAs on Na+ currents were assessed by the whole-cell patch-clamp technique in cultured neonatal rat ventricular myocytes. Extracellular application of the free 5,8,11,14,17-eicosapentaenoic acid (EPA) produced a concentration-dependent suppression of ventricular, voltage-activated Na+ currents (INa). After cardiac myocytes were treated with 5 or 10 microM EPA, the peak INa (elicited by a single-step voltage change with pulses from -80 to -30 mV) was decreased by 51% +/- 8% (P < 0.01; n = 10) and 64% +/- 5% (P < 0.001; n = 21), respectively, within 2 min. Likewise, the same concentrations of 4,7,10,16,19-docosahexaenoic acid produced the same inhibition of INa. By contrast, 5 and 10 microM arachidonic acid (AA) caused less inhibition of INa, but both n - 6 and n - 3 PUFAs inhibited INa significantly. A monounsaturated fatty acid and a saturated fatty acid did not. After washing out EPA, INa returned to the control level. Raising the concentration of EPA to 40 microM completely blocked INa. The IC50 of EPA was 4.8 microM. The inhibition of this Na+ channel was found to be dose and time, but not use dependent. Also, the EPA-induced inhibition of INa was voltage dependent, since 10 microM EPA produced 83% +/- 7% and 29% +/- 5% inhibition of INa elicited by pulses from -80 to -30 mV and from -150 to -30 mV, respectively, in single-step voltage changes. A concentration of 10 microM EPA shifted the steady-state inactivation curve of INa by -19 +/- 3 mV (n = 7; P < 0.01). These effects of PUFAs on INa may be important for their antiarrhythmic effect in vivo.
Resumo:
Because previous studies showed that polyunsaturated fatty acids can reduce the contraction rate of spontaneously beating heart cells and have antiarrhythmic effects, we examined the effects of the fatty acids on the electrophysiology of the cardiac cycle in isolated neonatal rat cardiac myocytes. Exposure of cardiomyocytes to 10 microM eicosapentaenoic acid for 2-5 min markedly increased the strength of the depolarizing current required to elicit an action potential (from 18.0 +/- 2.4 pA to 26.8 +/- 2.7 pA, P < 0.01) and the cycle length of excitability (from 525 ms to 1225 ms, delta = 700 +/- 212, P < 0.05). These changes were due to an increase in the threshold for action potential (from -52 mV to -43 mV, delta = 9 +/- 3, P < 0.05) and a more negative resting membrane potential (from -52 mV to -57 mV, delta = 5 +/- 1, P < 0.05). There was a progressive prolongation of intervals between spontaneous action potentials and a slowed rate of phase 4 depolarization. Other polyunsaturated fatty acids--including docosahexaenoic acid, linolenic acid, linoleic acid, arachidonic acid, and its nonmetabolizable analog eicosatetraynoic acid, but neither the monounsaturated oleic acid nor the saturated stearic acid--had similar effects. The effects of the fatty acids could be reversed by washing with fatty acid-free bovine serum albumin. These results show that free polyunsaturated fatty acids can reduce membrane electrical excitability of heart cells and provide an electrophysiological basis for the antiarrhythmic effects of these fatty acids.
Resumo:
INTRODUÇÃO: As doenças cardiovasculares (DCV) são a principal causa de morte no mundo, sendo muitos dos fatores de risco passíveis de prevenção e controle. Embora as DCV sejam complexas em sua etiologia e desenvolvimento, a concentração elevada de LDL-c e baixa de HDL-c constituem os fatores de risco modificáveis mais monitorados na prática clínica, embora não sejam capazes de explicar todos os eventos cardiovasculares. Portanto, investigar como intervenções farmacológicas e nutricionais podem modular parâmetros oxidativos, físicos e estruturais das lipoproteínas pode fornecer estimativa adicional ao risco cardiovascular. Dentre os diversos nutrientes e compostos bioativos relacionados às DCV, os lipídeos representam os mais investigados e descritos na literatura. Nesse contexto, os ácidos graxos insaturados (ômega-3, ômega-6 e ômega-9) têm sido foco de inúmeros estudos. OBJETIVOS: Avaliar o efeito da suplementação com ômega-3, ômega-6 e ômega-9 sobre os parâmetros cardiometabólicos em indivíduos adultos com múltiplos fatores de risco e sem evento cardiovascular prévio. MATERIAL E MÉTODOS: Estudo clínico, randomizado, duplo-cego, baseado em intervenção nutricional (3,0 g/dia de ácidos graxos) sob a fórmula de cápsulas contendo: ômega-3 (37 por cento de EPA e 23 por cento de DHA) ou ômega-6 (65 por cento de ácido linoleico) ou ômega-9 (72 por cento de ácido oleico). A amostra foi composta por indivíduos de ambos os sexos, com idade entre 30 e 74 anos, apresentando pelo menos um dos seguintes fatores de risco: Dislipidemia, Diabetes Mellitus, Obesidade e Hipertensão Arterial Sistêmica. Após aprovação do Comitê de Ética, os indivíduos foram distribuídos nos três grupos de intervenção. No momento basal, os indivíduos foram caracterizados quanto aos aspectos demográficos (sexo, idade e etnia) e clínicos (medicamentos, doenças atuais e antecedentes familiares). Nos momentos basal e após 8 semanas de intervenção, amostras de sangue foram coletadas após 12h de jejum. A partir do plasma foram analisados: perfil lipídico (CT, LDL-c, HDL-c, TG), apolipoproteínas AI e B, ácidos graxos não esterificados, atividade da PON1, LDL(-) e auto-anticorpos, ácidos graxos, glicose, insulina, tamanho e distribuição percentual da LDL (7 subfrações e fenótipo A e não-A) e HDL (10 subfrações). O efeito do tempo, da intervenção e associações entre os ácidos graxos e aspectos qualitativos das lipoproteínas foram testados (SPSS versão 20.0, p <0,05). RESULTADOS: Uma primeira análise dos resultados baseada em um corte transversal demonstrou, por meio da análise de tendência linear ajustada pelo nível de risco cardiovascular, que o maior tercil plasmático de DHA se associou positivamente com HDL-c, HDLGRANDE e tamanho de LDL e negativamente com HDLPEQUENA e TG. Observou-se também que o maior tercil plasmático de ácido linoleico se associou positivamente com HDLGRANDE e tamanho de LDL e negativamente com HDLPEQUENA e TG. Esse perfil de associação não foi observado quando foram avaliados os parâmetros dietéticos. Avaliando uma subamostra que incluiu indivíduos tabagistas suplementados com ômega-6 e ômega-3, observou-se que ômega-3 modificou positivamente o perfil lipídico e as subfrações da HDL. Nos modelos de regressão linear ajustados pela idade, sexo e hipertensão, o DHA plasmático apresentou associações negativas com a HDLPEQUENA. Quando se avaliou exclusivamente o efeito do ômega-3 em indivíduos tabagistas e não tabagistas, observou-se que fumantes, do sexo masculino, acima de 60 anos de idade, apresentando baixo percentual plasmático de EPA e DHA (<8 por cento ), com excesso de peso e gordura corporal elevada, apresentam maior probabilidade de ter um perfil de subfrações de HDL mais aterogênicas. Tendo por base os resultados acima, foi comparado o efeito do ômega-3, ômega-6 e ômega-9 sobre os parâmetros cardiometabólicos. O ômega-3 promoveu redução no TG, aumento do percentual de HDLGRANDE e redução de HDLPEQUENA. O papel cardioprotetor do ômega-3 foi reforçado pelo aumento na incorporação de EPA e DHA, no qual indivíduos com EPA e DHA acima de 8 por cento apresentaram maior probabilidade de ter HDLGRANDE e menor de ter HDLPEQUENA. Em adição, observou-se também que o elevado percentual plasmático de ômega-9 se associou com partículas de LDL menos aterogênicas (fenótipo A). CONCLUSÃO: Ácidos graxos plasmáticos, mas não dietéticos, se correlacionam com parâmetros cardiometabólicos. A suplementação com ômega-3, presente no óleo de peixe, promoveu redução no TG e melhoria nos parâmetros qualitativos da HDL (mais HDLGRANDE e menos HDLPEQUENA). Os benefícios do ômega-3 foram particularmente relevantes nos indivíduos tabagistas e naqueles com menor conteúdo basal de EPA e DHA plasmáticos. Observou-se ainda que o ômega-9 plasmático, presente no azeite de oliva, exerceu impacto positivo no tamanho e subfrações da LDL.
Resumo:
[GRAPHICS] Oxidation of tetradecanoic and hexadecanoic acids by cytochrome P450(Biol) (CYP107H1) produces mainly the 11-, 12-, and 13-hydroxy C-14 fatty acids and the 11- to 15-hydroxy C-16 fatty acids, respectively. In contrast to previous reports, terminal hydroxylation is not observed. The enantiospecificity of fatty acid hydroxylation by P450(Biol) was also determined, and the enzyme was shown to be moderately selective for production of the (R)-alcohols.
Resumo:
The mechanism of aliphatic hydroxylation by cytochromes P450 has been the subject of intense debate with several proposed mechanistic alternatives. Various cyclopropyl containing compounds (radical clocks), which can produce both unrearranged and ring opened products upon oxidation, have been key tools in these investigations. In this study, we introduce several cyclopropyl containing fatty acids 1a-4a with which to probe the mechanism of P450s capable of fatty acid hydroxylation. The probes are shown to be capable of distinguishing radical from cationic intermediates due to the rapid equilibration of isomeric cyclopropyl cations. Ring opening of a radical intermediate in an oxidative transformation is expected to yield a single rearranged alcohol, whereas a cation isomerizes prior to ring opening, leading to two isomeric homoallylic alcohols. Oxidation of these probes by P450(BM3) and P450(Biol) gives results consistent with a radical but not a cationic intermediate in fatty acid hydroxylation by these enzymes. Quantitation of the unrearranged and ring opened products gives remarkably homogeneous rates for oxygen rebound of (2-3) x 10(10) s(-1). The effects of introduction of a cyclopropane ring into a fatty acid upon the regiochemistry of hydroxylation are discussed.
Resumo:
Caveolins are a crucial component of plasma membrane (PM) caveolae but have also been localized to intracellular compartments, including the Golgi complex and lipid bodies. Mutant caveolins associated with human disease show aberrant trafficking to the PM and Golgi accumulation. We now show that the Golgi pool of mainly newly synthesized protein is detergent-soluble and predominantly in a monomeric state, in contrast to the surface pool. Caveolin at the PM is not recognized by specific caveolin antibodies unless PM cholesterol is depleted. Exit from the Golgi complex of wild-type caveolin-1 or -3, but not vesicular stomatitis virus-G protein, is modulated by changing cellular cholesterol levels. In contrast, a muscular dystrophy-associated mutant of caveolin-3, Cav3P104L, showed increased accumulation in the Golgi complex upon cholesterol treatment. In addition, we demonstrate that in response to fatty acid treatment caveolin can follow a previously undescribed pathway from the PM to lipid bodies and can move from lipid bodies to the PM in response to removal of fatty acids. The results suggest that cholesterol is a rate-limiting component for caveolin trafficking. Changes in caveolin flux through the exocytic pathway can therefore be an indicator of cellular cholesterol and fatty acid levels.
Resumo:
Relationships among quality factors in retailed free-range, corn-fed, organic, and conventional chicken breasts (9) were modeled using chemometric approaches. Use of principal component analysis (PCA) to neutral lipid composition data explained the majority (93%) of variability (variance) in fatty acid contents in 2 significant multivariate factors. PCA explained 88 and 75% variance in 3 factors for, respectively, flame ionization detection (FID) and nitrogen phosphorus (NPD) components in chromatographic flavor data from cooked chicken after simultaneous distillation extraction. Relationships to tissue antioxidant contents were modeled. Partial least square regression (PLS2), interrelating total data matrices, provided no useful models. By using single antioxidants as Y variables in PLS (1), good models (r2 values > 0.9) were obtained for alpha-tocopherol, glutathione, catalase, glutathione peroxidase, and reductase and FID flavor components and among the variables total mono and polyunsaturated fatty acids and subsets of FID, and saturated fatty acid and NPD components. Alpha-tocopherol had a modest (r2 = 0.63) relationship with neutral lipid n-3 fatty acid content. Such factors thus relate to flavor development and quality in chicken breast meat.