944 resultados para OXYGEN SPECIES PRODUCTION


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Interleukin-1beta (IL-1beta), reactive oxygen species (ROS), and thioredoxin-interacting protein (TXNIP) are all implicated in the pathogenesis of type 2 diabetes mellitus (T2DM). Here we review mechanisms directing IL-1beta production and its pathogenic role in islet dysfunction during chronic hyperglycemia. In doing so, we integrate previously disparate disease-driving mechanisms for IL-1beta, ROS, and TXNIP in T2DM into one unifying model in which the NLRP3 inflammasome plays a central role. The NLRP3 inflammasome also drives IL-1beta maturation and secretion in another disease of metabolic dysregulation, gout. Thus, we propose that the NLRP3 inflammasome contributes to the pathogenesis of T2DM and gout by functioning as a sensor for metabolic stress.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Epidemiological studies have demonstrated that exposure to fine particles is associated to adverse health effects, including cancer, respiratory and cardiovascular diseases. However, mechanisms by which particles induce health effects remain unclear. According to one of the most investigated hypotheses, particles cause adverse effects through the production of reactive oxygen species (ROS), which are very hazardous compounds able to attack directly biological structures, including the DNA strand or the lipid bilayer of the cells. If the defense mechanisms, constituted of antioxidants, are not able to counter ROS, then these compounds will cause in the body a range of oxidation reactions called "oxidative stress". The aim of the present research project was to better understand mechanisms by which exposure to fine particles induces oxidative stress. The first point of this project was to check whether exposure to high levels of fine particles is directly linked to oxidative stress, and whether this oxidative stress is accompanied by the activation of the defense mechanisms (antioxidants). The second point was to study the role played by the particle surface characteristics in the oxidative stress process. For that purpose, a study was conducted in bus depots with the participation of 40 mechanics. First, occupational exposure to particles (PM4) and to other pollutants (NOx, O3) was measured over a two-day period. Then, urine samples of mechanics were collected in order to measure levels of 8-hydroxy-2'-deoxyguanosine (8OHdG) and antioxidants. 8OHdG is a molecule formed by the oxidation of DNA and allowing to assess the oxidative stress status of the mechanics. Finally, particles were collected on filters, and functional groups located on the particle surface were analyzed in the laboratory using a Knudsen flow reactor. This technique allows not only to quantify functional groups on the particle surface, but also to measure the reaction kinetics. Results obtained during the field campaign in bus depots showed that mechanics were exposed to rather low levels of PM4 (20-85 μg/m3) and of pollutants (NOx: 100-1000 ppb; O3: <15 ppb). However, despite this low exposure, urinary levels of the oxidative stress biomarker (8OHdG) increased significantly for non-smoking workers over a two-day period of shift. This oxidative stress was accompanied by an increase of antioxidants, indicating the activation of defense mechanisms. On the other hand, the analysis of functional groups on the particle surface showed important differences, depending on the workplace, the date and the activities of workers. The particle surface contained simultaneously antagonistic functional groups which did not undergo internal reactions (such as acids and bases), and was usually characterized by a high density of carbonyl functions and a low density of acidic sites. Reaction kinetics measured using the Knudsen flow reactor pointed out fast reactions of oxidizable groups and slow reactions of acidic sites. Several exposure parameters were significantly correlated with the increase of the oxidative stress status: the presence of acidic sites, carbonyl functions and oxidizable groups on the particle surface; reaction kinetics of functional groups on the particle surface; particulate iron and copper concentrations; and NOx concentration.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Insect eggs represent a threat for the plant as hatching larvae rapidly start with their feeding activity. Using a whole-genome microarray, we studied the expression profile of Arabidopsis (Arabidopsis thaliana) leaves after oviposition by two pierid butterflies. For Pieris brassicae, the deposition of egg batches changed the expression of hundreds of genes over a period of 3 d after oviposition. The transcript signature was similar to that observed during a hypersensitive response or in lesion-mimic mutants, including the induction of defense and stress-related genes and the repression of genes involved in growth and photosynthesis. Deposition of single eggs by Pieris rapae caused a similar although much weaker transcriptional response. Analysis of the jasmonic acid and salicylic acid mutants coi1-1 and sid2-1 indicated that the response to egg deposition is mostly independent of these signaling pathways. Histochemical analyses showed that egg deposition is causing a localized cell death, accompanied by the accumulation of callose, and the production of reactive oxygen species. In addition, activation of the pathogenesis-related1::beta-glucuronidase reporter gene correlated precisely with the site of egg deposition and was also triggered by crude egg extract. This study provides molecular evidence for the detection of egg deposition by Arabidopsis plants and suggests that oviposition causes a localized response with strong similarity to a hypersensitive response.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The inhalation of airborne pollutants such as asbestos or silica is linked to inflammation of the lung, fibrosis and lung cancer. How the presence of pathogenic dust is recognised, and how chronic inflammatory diseases are triggered are poorly understood. We will se show that asbestos and silica are sensed by the Nalp3 inflammasome, whose subsequent activation leads to IL-1b secretion. Inflammasome activation is triggered by reactive oxygen species, which are generated by a NADPH oxidase upon particle phagocytosis. In a model of asbestos inhalation, Nalp3_/_ mice showed diminished recruitment of inflammatory cells to the lungs, paralleled by lower cytokine production. Our findings implicate the Nalp3 inflammasome in particulate matter-related pulmonary diseases and support its role as a major proinflammatory ''danger" receptor.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The inhalation of airborne pollutants, such as asbestos or silica, is linked to inflammation of the lung, fibrosis, and lung cancer. How the presence of pathogenic dust is recognized and how chronic inflammatory diseases are triggered are poorly understood. Here, we show that asbestos and silica are sensed by the Nalp3 inflammasome, whose subsequent activation leads to interleukin-1beta secretion. Inflammasome activation is triggered by reactive oxygen species, which are generated by a NADPH oxidase upon particle phagocytosis. (NADPH is the reduced form of nicotinamide adenine dinucleotide phosphate.) In a model of asbestos inhalation, Nalp3-/- mice showed diminished recruitment of inflammatory cells to the lungs, paralleled by lower cytokine production. Our findings implicate the Nalp3 inflammasome in particulate matter-related pulmonary diseases and support its role as a major proinflammatory "danger" receptor

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cell-to-cell communication mediated by gap junctions made of Connexin36 (Cx36) contributes to pancreatic β-cell function. We have recently demonstrated that Cx36 also supports β-cell survival by a still unclear mechanism. Using specific Cx36 siRNAs or adenoviral vectors, we now show that Cx36 downregulation promotes apoptosis in INS-1E cells exposed to the pro-inflammatory cytokines (IL-1β, TNF-α and IFN-γ) involved at the onset of type 1 diabetes, whereas Cx36 overexpression protects against this effect. Cx36 overexpression also protects INS-1E cells against endoplasmic reticulum (ER) stress-mediated apoptosis, and alleviates the cytokine-induced production of reactive oxygen species, the depletion of the ER Ca(2+) stores, the CHOP overexpression and the degradation of the anti-apoptotic protein Bcl-2 and Mcl-1. We further show that cytokines activate the AMP-dependent protein kinase (AMPK) in a NO-dependent and ER-stress-dependent manner and that AMPK inhibits Cx36 expression. Altogether, the data suggest that Cx36 is involved in Ca(2+) homeostasis within the ER and that Cx36 expression is downregulated following ER stress and subsequent AMPK activation. As a result, cytokine-induced Cx36 downregulation elicits a positive feedback loop that amplifies ER stress and AMPK activation, leading to further Cx36 downregulation. The data reveal that Cx36 plays a central role in the oxidative stress and ER stress induced by cytokines and the subsequent regulation of AMPK activity, which in turn controls Cx36 expression and mitochondria-dependent apoptosis of insulin-producing cells.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Smad (Sma and Mad-related protein) 2/3 are downstream signaling molecules for TGF-β and myostatin (Mstn). Recently, Mstn was shown to induce reactive oxygen species (ROS) in skeletal muscle via canonical Smad3, nuclear factor-κB, and TNF-α pathway. However, mice lacking Smad3 display skeletal muscle atrophy due to increased Mstn levels. Hence, our aims were first to investigate whether Mstn induced muscle atrophy in Smad3(-/-) mice by increasing ROS and second to delineate Smad3-independent signaling mechanism for Mstn-induced ROS. Herein we show that Smad3(-/-) mice have increased ROS levels in skeletal muscle, and inactivation of Mstn in these mice partially ablates the oxidative stress. Furthermore, ROS induction by Mstn in Smad3(-/-) muscle was not via nuclear factor-κB (p65) signaling but due to activated p38, ERK MAPK signaling and enhanced IL-6 levels. Consequently, TNF-α, nicotinamide adenine dinucleotide phosphate oxidase, and xanthine oxidase levels were up-regulated, which led to an increase in ROS production in Smad3(-/-) skeletal muscle. The exaggerated ROS in the Smad3(-/-) muscle potentiated binding of C/EBP homology protein transcription factor to MuRF1 promoter, resulting in enhanced MuRF1 levels leading to muscle atrophy.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mitochondria have a fundamental role in the transduction of energy from food into ATP. The coupling between food oxidation and ATP production is never perfect, but may nevertheless be of evolutionary significance. The 'uncoupling to survive' hypothesis suggests that 'mild' mitochondrial uncoupling evolved as a protective mechanism against the excessive production of damaging reactive oxygen species (ROS). Because resource allocation and ROS production are thought to shape animal life histories, alternative life-history trajectories might be driven by individual variation in the degree of mitochondrial uncoupling. We tested this hypothesis in a small bird species, the zebra finch (Taeniopygia guttata), by treating adults with the artificial mitochondrial uncoupler 2,4-dinitrophenol (DNP) over a 32-month period. In agreement with our expectations, the uncoupling treatment increased metabolic rate. However, we found no evidence that treated birds enjoyed lower oxidative stress levels or greater survival rates, in contrast to previous results in other taxa. In vitro experiments revealed lower sensitivity of ROS production to DNP in mitochondria isolated from skeletal muscles of zebra finch than mouse. In addition, we found significant reductions in the number of eggs laid and in the inflammatory immune response in treated birds. Altogether, our data suggest that the 'uncoupling to survive' hypothesis may not be applicable for zebra finches, presumably because of lower effects of mitochondrial uncoupling on mitochondrial ROS production in birds than in mammals. Nevertheless, mitochondrial uncoupling appeared to be a potential life-history regulator of traits such as fecundity and immunity at adulthood, even with food supplied ad libitum.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the ecologically important arbuscular mycorrhizal fungi (AMF), Sod1 encodes a functional polypeptide that confers increased tolerance to oxidative stress and that is upregulated inside the roots during early steps of the symbiosis with host plants. It is still unclear whether its expression is directed at scavenging reactive oxygen species (ROS) produced by the host, if it plays a role in the fungus-host dialogue, or if it is a consequence of oxidative stress from the surrounding environment. All these possibilities are equally likely, and molecular variation at the Sod1 locus can possibly have adaptive implications for one or all of the three mentioned functions. In this paper, we analyzed the diversity of the Sod1 gene in six AMF species, as well as 14 Glomus intraradices isolates from a single natural population. By sequencing this locus, we identified a large amount of nucleotide and amino acid molecular diversity both among AMF species and individuals, suggesting a rapid divergence of its codons. The Sod1 gene was monomorphic within each isolate we analyzed, and quantitative PCR strongly suggest this locus is present as a single copy in G. intraradices. Maximum-likelihood analyses performed using a variety of models for codon evolution indicated that a number of amino acid sites most likely evolved under the regime of positive selection among AMF species. In addition, we found that some isolates of G. intraradices from a natural population harbor very divergent orthologous Sod1 sequences, and our analysis suggested that diversifying selection, rather than recombination, was responsible for the persistence of this molecular diversity within the AMF population.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Abstract APO866 is an inhibitor of nicotinamide adenine dinucleotide (NAD) biosynthesis that exhibits potent anti-lymphoma activity. Rituximab (RTX), an anti-CD20 antibody, kills lymphoma cells by direct apoptosis and antibody- and complement-dependent cell-mediated cytotoxicities, and has clinical efficacy in non-Hodgkin cell lymphomas. In the present study, we evaluated whether RTX could potentiate APO866-induced human B-lymphoma cell death and shed light on death-mediated mechanisms associated with this drug combination. We found that RTX significantly increases APO866-induced death in lymphoma cells from patients and lines. Mechanisms include enhancement of autophagy-mediated cell death, activation of caspase 3 and exacerbation of mitochondrial depolarization, but not increase of reactive oxygen species (ROS) production, when compared with those induced by each drug alone. In vivo, combined administration of APO866 with RTX in a laboratory model of human aggressive lymphoma significantly decreased tumor burden and prolonged survival over single-agent treatment. Our study demonstrates that the combination of RTX and APO866 optimizes B-cell lymphoma apoptosis and therapeutic efficacy over both compounds administered separately.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

OBJECTIVE To identify metabolic pathways that may underlie susceptibility or resistance to high-fat diet-induced hepatic steatosis. RESEARCH DESIGN AND METHODS We performed comparative transcriptomic analysis of the livers of A/J and C57Bl/6 mice, which are, respectively, resistant and susceptible to high-fat diet-induced hepatosteatosis and obesity. Mice from both strains were fed a normal chow or a high-fat diet for 2, 10, and 30 days, and transcriptomic data were analyzed by time-dependent gene set enrichment analysis. Biochemical analysis of mitochondrial respiration was performed to confirm the transcriptomic analysis. RESULTS Time-dependent gene set enrichment analysis revealed a rapid, transient, and coordinate upregulation of 13 oxidative phosphorylation genes after initiation of high-fat diet feeding in the A/J, but not in the C57Bl/6, mouse livers. Biochemical analysis using liver mitochondria from both strains of mice confirmed a rapid increase by high-fat diet feeding of the respiration rate in A/J but not C57Bl/6 mice. Importantly, ATP production was the same in both types of mitochondria, indicating increased uncoupling of the A/J mitochondria. CONCLUSIONS Together with previous data showing increased expression of mitochondrial β-oxidation genes in C57Bl/6 but not A/J mouse livers, our present study suggests that an important aspect of the adaptation of livers to high-fat diet feeding is to increase the activity of the oxidative phosphorylation chain and its uncoupling to dissipate the excess of incoming metabolic energy and to reduce the production of reactive oxygen species. The flexibility in oxidative phosphorylation activity may thus participate in the protection of A/J mouse livers against the initial damages induced by high-fat diet feeding that may lead to hepatosteatosis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A route of accumulation and elimination of therapeutic engineered nanoparticles (NPs) may be the kidney. Therefore, the interactions of different solid-core inorganic NPs (titanium-, silica-, and iron oxide-based NPs) were studied in vitro with the MDCK and LLC-PK epithelial cells as representative cells of the renal epithelia. Following cell exposure to the NPs, observations include cytotoxicity for oleic acid-coated iron oxide NPs, the production of reactive oxygen species for titanium dioxide NPs, and cell depletion of thiols for uncoated iron oxide NPs, whereas for silica NPs an apparent rapid and short-lived increase of thiol levels in both cell lines was observed. Following cell exposure to metallic NPs, the expression of the tranferrin receptor/CD71 was decreased in both cells by iron oxide NPs, but only in MDCK cells by titanium dioxide NPs. The tight association, then subsequent release of NPs by MDCK and LLC-PK kidney epithelial cells, showed that following exposure to the NPs, only MDCK cells could release iron oxide NPs, whereas both cells released titanium dioxide NPs. No transfer of any solid-core NPs across the cell layers was observed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In human pathologies, therapeutic treatments are often limited by the lack of selectivity of drugs and their elevated effective concentrations. Targeting these agents to a defined tissue could enhance their selectivity and then diminish their side effects when compared to drugs that accumulate in the entire body. Targeting could also improve treatment efficiency by allowing a localized high concentration of the agents. Based on the different behaviors and patterns of expression between diseased and normal cells, strategies for targeting can be explored. For example, receptors, proteases or trans-membrane carriers could be different or differently expressed. Many therapeutic procedures rely on this fact, including photodynamic therapy (PDT). PDT is already used in the treatment of some cancers, of inflammatory diseases and others diseases such as age-related macular degeneration or acne. PDT relies on the activation of a photosensitizer (PS) by visible light which results in the production of cytotoxic reactive oxygen species. In PDT, the general distribution of PS to the whole body leads to generalized photosensitization and poor acceptance of treatments by patients. One way to avoid these effects is to improve the targeting of PSs to diseased tissues using modification of PS with peptides or proteins that will target specific receptors or enzymes. PSs could also be functionalized with non-proteic ligands such as organometalics to achieve targeted and/or combined therapies. Alternatively, PSs could be encapsulated in nanoparticles bearing targeting agents which will decrease concentration of free circulating PS and improve photodynamic efficiency. These different approaches will be discussed in the present review with an emphasis on the use of peptides and proteins.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Histone deacetylases (HDACs) control gene expression by deacetylating histones and nonhistone proteins. HDAC inhibitors (HDACi) are powerful anticancer drugs that exert anti-inflammatory and immunomodulatory activities. We recently reported a proof-of-concept study demonstrating that HDACi increase susceptibility to bacterial infections in vivo. Yet, still little is known about the effects of HDACi on antimicrobial innate immune defenses. Here we show that HDACi belonging to different chemical classes inhibit at multiple levels the response of macrophages to bacterial infection. HDACi reduce the phagocytosis and the killing of Escherichia coli and Staphylococcus aureus by macrophages. In line with these findings, HDACi decrease the expression of phagocytic receptors and inhibit bacteria-induced production of reactive oxygen and nitrogen species by macrophages. Consistently, HDACi impair the expression of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunits and inducible nitric oxide synthase. These data indicate that HDACi have a strong impact on critical antimicrobial defense mechanisms in macrophages.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Human tumors often contain slowly proliferating cancer cells that resist treatment, but we do not know precisely how these cells arise. We show that rapidly proliferating cancer cells can divide asymmetrically to produce slowly proliferating "G0-like" progeny that are enriched following chemotherapy in breast cancer patients. Asymmetric cancer cell division results from asymmetric suppression of AKT/PKB kinase signaling in one daughter cell during telophase of mitosis. Moreover, inhibition of AKT signaling with small-molecule drugs can induce asymmetric cancer cell division and the production of slow proliferators. Cancer cells therefore appear to continuously flux between symmetric and asymmetric division depending on the precise state of their AKT signaling network. This model may have significant implications for understanding how tumors grow, evade treatment, and recur.