976 resultados para OXIDE FORMATION
Resumo:
Self-assembly of nanoparticles is a promising route to form complex, nanostructured materials with functional properties. Nanoparticle assemblies characterized by a crystallographic alignment of the nanoparticles on the atomic scale, i.e. mesocrystals, are commonly found in nature with outstanding functional and mechanical properties. This thesis aims to investigate and understand the formation mechanisms of mesocrystals formed by self-assembling iron oxide nanocubes. We have used the thermal decomposition method to synthesize monodisperse, oleate-capped iron oxide nanocubes with average edge lengths between 7 nm and 12 nm and studied the evaporation-induced self-assembly in dilute toluene-based nanocube dispersions. The influence of packing constraints on the alignment of the nanocubes in nanofluidic containers has been investigated with small and wide angle X-ray scattering (SAXS and WAXS, respectively). We found that the nanocubes preferentially orient one of their {100} faces with the confining channel wall and display mesocrystalline alignment irrespective of the channel widths. We manipulated the solvent evaporation rate of drop-cast dispersions on fluorosilane-functionalized silica substrates in a custom-designed cell. The growth stages of the assembly process were investigated using light microscopy and quartz crystal microbalance with dissipation monitoring (QCM-D). We found that particle transport phenomena, e.g. the coffee ring effect and Marangoni flow, result in complex-shaped arrays near the three-phase contact line of a drying colloidal drop when the nitrogen flow rate is high. Diffusion-driven nanoparticle assembly into large mesocrystals with a well-defined morphology dominates at much lower nitrogen flow rates. Analysis of the time-resolved video microscopy data was used to quantify the mesocrystal growth and establish a particle diffusion-based, three-dimensional growth model. The dissipation obtained from the QCM-D signal reached its maximum value when the microscopy-observed lateral growth of the mesocrystals ceased, which we address to the fluid-like behavior of the mesocrystals and their weak binding to the substrate. Analysis of electron microscopy images and diffraction patterns showed that the formed arrays display significant nanoparticle ordering, regardless of the distinctive formation process. We followed the two-stage formation mechanism of mesocrystals in levitating colloidal drops with real-time SAXS. Modelling of the SAXS data with the square-well potential together with calculations of van der Waals interactions suggests that the nanocubes initially form disordered clusters, which quickly transform into an ordered phase.
Resumo:
Les cellules endothéliales forment une couche semi-perméable entre le sang et les organes. La prolifération, la migration et la polarisation des cellules endothéliales sont essentielles à la formation de nouveaux vaisseaux à partir de vaisseaux préexistants, soit l’angiogenèse. Le facteur de croissance de l’endothélium vasculaire (VEGF) peut activer la synthase endothéliale du monoxyde d’azote (eNOS) et induire la production de monoxyde d’azote (NO) nécessaire pour la régulation de la perméabilité vasculaire et l’angiogenèse. β- caténine est une composante essentielle du complexe des jonctions d’ancrage ainsi qu’un régulateur majeur de la voie de signalisation de Wnt/β-caténine dans laquelle elle se joint au facteur de transcription TCF/LEF et module l’expression de nombreux gènes, dont certains sont impliqués dans l’angiogenèse. La S-nitrosylation (SNO) est un mécanisme de régulation posttraductionnel des protéines par l’ajout d’un groupement nitroso au niveau de résidus cystéines. Le NO produit par eNOS peut induire la S-nitrosylation de la β−caténine au niveau des jonctions intercellulaires et moduler la perméabilité de l’endothélium. Il a d’ailleurs été montré que le NO peut contrôler l’expression génique par la transcription. Le but de cette thèse est d’établir le rôle du NO au sein de la transcription des cellules endothéliales, spécifiquement au niveau de l’activité de β-caténine. Le premier objectif était de déterminer si la SNO de la β-caténine affecte son activité transcriptionnelle. Nous avons montré que le NO inhibe l’activité transcriptionnelle de β- caténine ainsi que la prolifération des cellules endothéliales induites par l’activation de la voie Wnt/β-caténine. Il est intéressant de constater que le VEGF, qui induit la production de NO via eNOS, réprime l’expression de AXIN2 qui est un gène cible de Wnt s’exprimant suite à la i i stimulation par Wnt3a et ce, dépendamment de eNOS. Nous avons identifié que la cystéine 466 de la β-caténine est un résidu essentiel à la modulation répressive de son activité transcriptionnelle par le NO. Lorsqu’il est nitrosylé, ce résidu est responsable de la perturbation du complexe de transcription formé de β-caténine et TCF-4 ce qui inhibe la prolifération des cellules endothéliales induite par la stimulation par Wnt3a. Puisque le NO affecte la transcription, nous avons réalisé l’analyse du transcriptome afin d’obtenir une vue d’ensemble du rôle du NO dans l’activité transcriptionnelle des cellules endothéliales. L’analyse différentielle de l’expression des gènes de cellules endothéliales montre que la répression de eNOS par siRNA augmente l’expression de gènes impliqués au niveau de la polarisation tels que : PARD3A, PARD3B, PKCZ, CRB1 et TJ3. Cette analyse suggère que le NO peut réguler la polarisation des cellules et a permis d’identifier des gènes responsables de l’intégrité des cellules endothéliales et de la réponse immunitaire. De plus, l’analyse de voies de signalisation par KEGG montre que certains gènes modulés par l’ablation de eNOS sont enrichis dans de nombreuses voies de signalisation, notamment Ras et Notch qui sont importantes lors de la migration cellulaire et la différenciation des cellules de têtes et de tronc (tip/stalk). Le regroupement des gènes exprimés chez les cellules traitées au VEGF (déplétées de eNOS ou non) révèle que le NO peut affecter l’expression de gènes contribuant au processus angiogénique, dont l’attraction chimiotactique. Notre étude montre que le NO module la transcription des cellules endothéliales et régule l’expression des gènes impliqués dans l’angiogenèse et la fonction endothéliale.
Resumo:
The main objective of this dissertation is the development and processing of novel ionic conducting ceramic materials for use as electrolytes in proton or oxide-ion conducting solid oxide fuel cells. The research aims to develop new processing routes and/or materials offering superior electrochemical behavior, based on nanometric ceramic oxide powders prepared by mechanochemical processes. Protonic ceramic fuel cells (PCFCs) require electrolyte materials with high proton conductivity at intermediate temperatures, 500-700ºC, such as reported for perovskite zirconate oxides containing alkaline earth metal cations. In the current work, BaZrO3 containing 15 mol% of Y (BZY) was chosen as the base material for further study. Despite offering high bulk proton conductivity the widespread application of this material is limited by its poor sinterability and grain growth. Thus, minor additions of oxides of zinc, phosphorous and boron were studied as possible sintering additives. The introduction of ZnO can produce substantially enhanced densification, compared to the un-doped material, lowering the sintering temperature from 1600ºC to 1300ºC. Thus, the current work discusses the best solid solution mechanism to accommodate this sintering additive. Maximum proton conductivity was shown to be obtained in materials where the Zn additive is intentionally adopted into the base perovskite composition. P2O5 additions were shown to be less effective as a sintering additive. The presence of P2O5 was shown to impair grain growth, despite improving densification of BZY for intermediate concentrations in the range 4 – 8 mol%. Interreaction of BZY with P was also shown to have a highly detrimental effect on its electrical transport properties, decreasing both bulk and grain boundary conductivities. The densification behavior of H3BO3 added BaZrO3 (BZO) shows boron to be a very effective sintering aid. Nonetheless, in the yttrium containing analogue, BaZr0.85Y0.15O3- (BZY) the densification behavior with boron additives was shown to be less successful, yielding impaired levels of densification compared to the plain BZY. This phenomenon was shown to be related to the undesirable formation of barium borate compositions of high melting temperatures. In the last section of the work, the emerging oxide-ion conducting materials, (Ba,Sr)GeO3 doped with K, were studied. Work assessed if these materials could be formed by mechanochemical process and the role of the ionic radius of the alkaline earth metal cation on the crystallographic structure, compositional homogeneity and ionic transport. An abrupt jump in oxide-ion conductivity was shown on increasing operation temperature in both the Sr and Ba analogues.
Resumo:
A well-organised reduced graphene oxide (RGO) and silver (Ag) wrapped TiO2 nano-hybrid was successfully achieved through a facile and easy route. The inherent characteristics of the synthesized RGO-Ag/TiO2 were revealed through crystalline phase, morphology, chemical composition, Raman scattering, UV-visible absorption, and photoluminescence analyses. The adopted synthesis route significantly controlled the uniform formation of silver nanoparticles and contributed for the absorption of light in the visible spectrum through localized surface plasmon resonance effects. The wrapped RGO nanosheets triggered the electron mobility and promoted visible light shift towards red spectrum. The accomplishment of synergised effect of RGO and Ag well degraded Bisphenol A under visible light irradiation with a removal efficiency of 61.9%.
Resumo:
Les cellules endothéliales forment une couche semi-perméable entre le sang et les organes. La prolifération, la migration et la polarisation des cellules endothéliales sont essentielles à la formation de nouveaux vaisseaux à partir de vaisseaux préexistants, soit l’angiogenèse. Le facteur de croissance de l’endothélium vasculaire (VEGF) peut activer la synthase endothéliale du monoxyde d’azote (eNOS) et induire la production de monoxyde d’azote (NO) nécessaire pour la régulation de la perméabilité vasculaire et l’angiogenèse. β- caténine est une composante essentielle du complexe des jonctions d’ancrage ainsi qu’un régulateur majeur de la voie de signalisation de Wnt/β-caténine dans laquelle elle se joint au facteur de transcription TCF/LEF et module l’expression de nombreux gènes, dont certains sont impliqués dans l’angiogenèse. La S-nitrosylation (SNO) est un mécanisme de régulation posttraductionnel des protéines par l’ajout d’un groupement nitroso au niveau de résidus cystéines. Le NO produit par eNOS peut induire la S-nitrosylation de la β−caténine au niveau des jonctions intercellulaires et moduler la perméabilité de l’endothélium. Il a d’ailleurs été montré que le NO peut contrôler l’expression génique par la transcription. Le but de cette thèse est d’établir le rôle du NO au sein de la transcription des cellules endothéliales, spécifiquement au niveau de l’activité de β-caténine. Le premier objectif était de déterminer si la SNO de la β-caténine affecte son activité transcriptionnelle. Nous avons montré que le NO inhibe l’activité transcriptionnelle de β- caténine ainsi que la prolifération des cellules endothéliales induites par l’activation de la voie Wnt/β-caténine. Il est intéressant de constater que le VEGF, qui induit la production de NO via eNOS, réprime l’expression de AXIN2 qui est un gène cible de Wnt s’exprimant suite à la i i stimulation par Wnt3a et ce, dépendamment de eNOS. Nous avons identifié que la cystéine 466 de la β-caténine est un résidu essentiel à la modulation répressive de son activité transcriptionnelle par le NO. Lorsqu’il est nitrosylé, ce résidu est responsable de la perturbation du complexe de transcription formé de β-caténine et TCF-4 ce qui inhibe la prolifération des cellules endothéliales induite par la stimulation par Wnt3a. Puisque le NO affecte la transcription, nous avons réalisé l’analyse du transcriptome afin d’obtenir une vue d’ensemble du rôle du NO dans l’activité transcriptionnelle des cellules endothéliales. L’analyse différentielle de l’expression des gènes de cellules endothéliales montre que la répression de eNOS par siRNA augmente l’expression de gènes impliqués au niveau de la polarisation tels que : PARD3A, PARD3B, PKCZ, CRB1 et TJ3. Cette analyse suggère que le NO peut réguler la polarisation des cellules et a permis d’identifier des gènes responsables de l’intégrité des cellules endothéliales et de la réponse immunitaire. De plus, l’analyse de voies de signalisation par KEGG montre que certains gènes modulés par l’ablation de eNOS sont enrichis dans de nombreuses voies de signalisation, notamment Ras et Notch qui sont importantes lors de la migration cellulaire et la différenciation des cellules de têtes et de tronc (tip/stalk). Le regroupement des gènes exprimés chez les cellules traitées au VEGF (déplétées de eNOS ou non) révèle que le NO peut affecter l’expression de gènes contribuant au processus angiogénique, dont l’attraction chimiotactique. Notre étude montre que le NO module la transcription des cellules endothéliales et régule l’expression des gènes impliqués dans l’angiogenèse et la fonction endothéliale.
Resumo:
The atomic-level structure and chemistry of materials ultimately dictate their observed macroscopic properties and behavior. As such, an intimate understanding of these characteristics allows for better materials engineering and improvements in the resulting devices. In our work, two material systems were investigated using advanced electron and ion microscopy techniques, relating the measured nanoscale traits to overall device performance. First, transmission electron microscopy and electron energy loss spectroscopy (TEM-EELS) were used to analyze interfacial states at the semiconductor/oxide interface in wide bandgap SiC microelectronics. This interface contains defects that significantly diminish SiC device performance, and their fundamental nature remains generally unresolved. The impacts of various microfabrication techniques were explored, examining both current commercial and next-generation processing strategies. In further investigations, machine learning techniques were applied to the EELS data, revealing previously hidden Si, C, and O bonding states at the interface, which help explain the origins of mobility enhancement in SiC devices. Finally, the impacts of SiC bias temperature stressing on the interfacial region were explored. In the second system, focused ion beam/scanning electron microscopy (FIB/SEM) was used to reconstruct 3D models of solid oxide fuel cell (SOFC) cathodes. Since the specific degradation mechanisms of SOFC cathodes are poorly understood, FIB/SEM and TEM were used to analyze and quantify changes in the microstructure during performance degradation. Novel strategies for microstructure calculation from FIB-nanotomography data were developed and applied to LSM-YSZ and LSCF-GDC composite cathodes, aged with environmental contaminants to promote degradation. In LSM-YSZ, migration of both La and Mn cations to the grain boundaries of YSZ was observed using TEM-EELS. Few substantial changes however, were observed in the overall microstructure of the cells, correlating with a lack of performance degradation induced by the H2O. Using similar strategies, a series of LSCF-GDC cathodes were analyzed, aged in H2O, CO2, and Cr-vapor environments. FIB/SEM observation revealed considerable formation of secondary phases within these cathodes, and quantifiable modifications of the microstructure. In particular, Cr-poisoning was observed to cause substantial byproduct formation, which was correlated with drastic reductions in cell performance.
Resumo:
Nitric Oxide (NO) has been known for long to regulate vessel tone. However, the close proximity of the site of NO production to “sinks” of NO such as hemoglobin (Hb) in blood suggest that blood will scavenge most of the NO produced. Therefore, it is unclear how NO is able to play its physiological roles. The current study deals with means by which this could be understood. Towards studying the role of nitrosothiols and nitrite in preserving NO availability, a study of the kinetics of glutathione (GSH) nitrosation by NO donors in aerated buffered solutions was undertaken first. Results suggest an increase in the rate of the corresponding nitrosothiol (GSNO) formation with an increase in GSH with a half-maximum constant EC50 that depends on NO concentration, thus indicating a significant contribution of ∙NO2 mediated nitrosation in the production of GSNO. Next, the ability of nitrite to be reduced to NO in the smooth muscle cells was evaluated. The NO formed was inhibited by sGC inhibitors and accelerated by activators and was independent of O2 concentration. Nitrite transport mechanisms and effects of exogenous nitrate on transport and reduction of nitrite were examined. The results showed that sGC can mediate nitrite reduction to NO and nitrite is transported across the smooth muscle cell membrane via anion channels, both of which can be attenuated by nitrate. Finally, a 2 – D axisymmetric diffusion model was constructed to test the accumulation of NO in the smooth muscle layer from reduction of nitrite. It was observed that at the end of the simulation period with physiological concentrations of nitrite in the smooth muscle cells (SMC), a low sustained NO generated from nitrite reduction could maintain significant sGC activity and might affect vessel tone. The major nitrosating mechanism in the circulation at reduced O2 levels was found to be anaerobic and a Cu+ dependent GSNO reduction activity was found to deliver minor amounts of NO from physiological GSNO levels in the tissue.
Resumo:
Metal oxide thin films are important for modern electronic devices ranging from thin film transistors to photovoltaics and functional optical coatings. Solution processed techniques allow for thin films to be rapidly deposited over a range of surfaces without the extensive processing of comparative vapour or physical deposition methods. The production of thin films of vanadium oxide prepared through dip-coating was developed enabling a greater understanding of the thin film formation. Mechanisms of depositing improved large area uniform coverage on a number of technologically relevant substrates were examined. The fundamental mechanism for polymer-assisted deposition in improving thin film surface smoothness and long range order has been delivered. Different methods were employed for adapting the alkoxide based dip-coating technique to produce a variety of amorphous and crystalline vanadium oxide based thin films. Using a wide range of material, spectroscopic and optical measurement techniques the morphology, structure and optoelectronic properties of the thin films were studied. The formation of pinholes on the surface of the thin films, due to dewetting and spinodal effects, was inhibited using the polymer assisted deposition technique. Uniform thin films with sub 50 nm thicknesses were deposited on a variety of substrates controlled through alterations to the solvent-alkoxide dilution ratios and employing polymer assisted deposition techniques. The effects of polymer assisted deposition altered the crystallized VO thin films from a granular surface structure to a polycrystalline structure composed of high density small in-plane grains. The formation of transparent VO based thin film through Si and Na substrate mediated diffusion highlighted new methods for material formation and doping.
Resumo:
Brazil typifies the land use changes happening in South America, where natural vegetation is continuously converted into agriculturally used lands, such as cattle pastures and croplands. Such changes in land use are always associated with changes in the soil nutrient cycles and result in altered greenhouse gas fluxes from the soil to the atmosphere. In this study, we analyzed literature values to extract patterns of direct nitrous oxide (N2O) emissions from soils of different ecosystems in Brazil. Fluxes from natural ecosystems exhibited a wide range: whereas median annual flux rates were highest in Amazonian and Atlantic rainforests (2.42 and 0.88 kg N ha-1), emissions from cerrado soils were close to zero. The decrease in emissions from pastures with increasing time after conversion was associated with pasture degradation. We found comparatively low N2O-N fluxes from croplands (-0.07 to 4.26 kg N ha-1 yr-1 , median 0.80 kg N ha-1 yr-1) and a low response to N fertilization. Contrary to the assumptions, soil parameters, such as pH, Corg, and clay content emerged as poor predictors for N2O fluxes. This could be a result of the formation of micro-aggregates, which strongly affect the hydraulic properties of the soil, and consequently define nitrification and denitrification potentials. Since data from croplands mainly derived from areas that had been under natural cerrado vegetation before, it could explain the low emissions under agriculture. Measurements must be more frequent and regionally spread in order to enable sound national estimates.
Resumo:
Biofilm formation on reverse osmosis (RO) systems represents a drawback in the application of this technology by different industries, including oil refineries. In RO systems the feed water maybe a source of microbial contamination and thus contributes for the formation of biofilm and consequent biofouling. In this study the planktonic culturable bacterial community was characterized from a feed water of a RO system and their capacities were evaluated to form biofilm in vitro. Bacterial motility and biofilm control were also analysed using phages. As results, diverse Protobacteria, Actinobacteria and Bacteroidetes were identified. Alphaproteobacteria was the predominant group and Brevundimonas, Pseudomonas and Mycobacterium the most abundant genera. Among the 30 isolates, 11 showed at least one type of motility and 11 were classified as good biofilm formers. Additionally, the influence of non-specific bacteriophage in the bacterial biofilms formed in vitro was investigated by action of phages enzymes or phage infection. The vB_AspP-UFV1 (Podoviridae) interfered in biofilm formation of most tested bacteria and may represent a good alternative in biofilm control. These findings provide important information about the bacterial community from the feed water of a RO system that may be used for the development of strategies for biofilm prevention and control in such systems.
Resumo:
Nitrogen assimilation plays a vital role in plant metabolism. Assimilation of nitrate, the primary source of nitrogen in soil, is linked to the generation of the redox signal nitric oxide (NO). An important mechanism by which NO regulates plant development and stress responses is through S-nitrosylation, that is, covalent attachment of NO to cysteine residues to form S-nitrosothiols (SNO). Despite the importance of nitrogen assimilation and NO signalling, it remains largely unknown how these pathways are interconnected. Here we show that SNO signalling suppresses both nitrate uptake and reduction by transporters and reductases, respectively, to fine tune nitrate homeostasis. Moreover, NO derived from nitrate assimilation suppresses the redox enzyme S-nitrosoglutathione Reductase 1 (GSNOR1) by S-nitrosylation, preventing scavenging of S-nitrosoglutathione, a major cellular bio-reservoir of NO. Hence, our data demonstrates that (S)NO controls its own generation and scavenging by modulating nitrate assimilation and GSNOR1 activity.
Resumo:
A 46-year-old woman complained of blurred and distorted vision in both eyes. Ophthalmic examination showed that visual acuity was 20/200 for the right eye and counting fingers left eye. Fundoscopy revealed perimacular hemorrhages, aneurismal dilatation of the vessels in the posterior pole, and a white and elevated lesion adjacent to vascular changes. We report a case of idiopathic macular telangiectasia and epiretinal membrane that occurs concomitantly. To our knowledge, this is the first report that describes an association between idiopathic macular telangiectasia and epiretinal membrane formation.
Resumo:
99
Resumo:
Acute phase response modifies high-density lipoprotein (HDL) into a dysfunctional particle that may favor oxidative/inflammatory stress and eNOS dysfunction. The present study investigated the impact of this phenomenon on patients presenting ST-elevation myocardial infarction (STEMI). Plasma was obtained from 180 consecutive patients within the first 24-h of onset of STEMI symptoms (D1) and after 5 days (D5). Nitrate/nitrite (NOx) and lipoproteins were isolated by gradient ultracentrifugation. The oxidizability of low-density lipoprotein incubated with HDL (HDLaoxLDL) and the HDL self-oxidizability (HDLautox) were measured after CuSO4 co-incubation. Anti-inflammatory activity of HDL was estimated by VCAM-1 secretion by human umbilical vein endothelial cells after incubation with TNF-α. Flow-mediated dilation (FMD) was assessed at the 30(th) day (D30) after STEMI. Among patients in the first tertile of admission HDL-Cholesterol (<33 mg/dL), the increment of NOx from D1 to D5 [6.7(2; 13) vs. 3.2(-3; 10) vs. 3.5(-3; 12); p = 0.001] and the FMD adjusted for multiple covariates [8.4(5; 11) vs 6.1(3; 10) vs. 5.2(3; 10); p = 0.001] were higher than in those in the second (33-42 mg/dL) or third (>42 mg/dL) tertiles, respectively. From D1 to D5, there was a decrease in HDL size (-6.3 ± 0.3%; p < 0.001) and particle number (-22.0 ± 0.6%; p < 0.001) as well as an increase in both HDLaoxLDL (33%(23); p < 0.001) and HDLautox (65%(25); p < 0.001). VCAM-1 secretion after TNF-a stimulation was reduced after co-incubation with HDL from healthy volunteers (-24%(33); p = 0.009), from MI patients at D1 (-23%(37); p = 0.015) and at D30 (-22%(24); p = 0.042) but not at D5 (p = 0.28). During STEMI, high HDL-cholesterol is associated with a greater decline in endothelial function. In parallel, structural and functional changes in HDL occur reducing its anti-inflammatory and anti-oxidant properties.
Resumo:
Pathological conditions associated with the impairment of nitric oxide (NO) production in the vasculature, such as Raynaud's syndrome and diabetic angiopathy, have stimulated the development of new biomaterials capable of delivering NO topically. With this purpose, we modified poly(vinyl-alcohol) (PVA) by chemically crosslinking it via esterification with mercaptosuccinic acid. This reaction allowed the casting of sulfhydrylated PVA (PVA-SH) films. Differential scanning calorimetry and X-ray diffractometry showed that the crosslinking reaction completely suppressed the crystallization of PVA, leading to a non-porous film with a homogeneous distribution of -SH groups. The remaining free hydroxyl groups in the PVA-SH network conferred partial hydrophylicity to the material, which was responsible for a swelling degree of ca. 110%. The PVA-SH films were subjected to an S-nitrosation reaction of the -SH groups, yielding a PVA containing S-nitrosothiol groups (PVA-SNO). Amperometric and chemiluminescence measurements showed that the PVA-SNO films were capable of releasing NO spontaneously after immersion in physiological medium. Laser Doppler-flowmetry, used to assess the blood flow in the dermal microcirculation, showed that the topical application of hydrated PVA-SNO films on the health skin led to a dose- and time-dependent increase of more than 5-fold in the dermal baseline blood flow in less than 10min, with a prolonged action of more than 4h during continuous application. These results show that PVA-SNO films might emerge as a new material with potential for the topical treatment of microvascular skin disorders.