924 resultados para Numerical approximations
Resumo:
Considering that information from soil reflectance spectra is underutilized in soil classification, this paper aimed to evaluate the relationship of soil physical, chemical properties and their spectra, to identify spectral patterns for soil classes, evaluate the use of numerical classification of profiles combined with spectral data for soil classification. We studied 20 soil profiles from the municipality of Piracicaba, State of São Paulo, Brazil, which were morphologically described and classified up to the 3rd category level of the Brazilian Soil Classification System (SiBCS). Subsequently, soil samples were collected from pedogenetic horizons and subjected to soil particle size and chemical analyses. Their Vis-NIR spectra were measured, followed by principal component analysis. Pearson's linear correlation coefficients were determined among the four principal components and the following soil properties: pH, organic matter, P, K, Ca, Mg, Al, CEC, base saturation, and Al saturation. We also carried out interpretation of the first three principal components and their relationships with soil classes defined by SiBCS. In addition, numerical classification of the profiles based on the OSACA algorithm was performed using spectral data as a basis. We determined the Normalized Mutual Information (NMI) and Uncertainty Coefficient (U). These coefficients represent the similarity between the numerical classification and the soil classes from SiBCS. Pearson's correlation coefficients were significant for the principal components when compared to sand, clay, Al content and soil color. Visual analysis of the principal component scores showed differences in the spectral behavior of the soil classes, mainly among Argissolos and the others soils. The NMI and U similarity coefficients showed values of 0.74 and 0.64, respectively, suggesting good similarity between the numerical and SiBCS classes. For example, numerical classification correctly distinguished Argissolos from Latossolos and Nitossolos. However, this mathematical technique was not able to distinguish Latossolos from Nitossolos Vermelho férricos, but the Cambissolos were well differentiated from other soil classes. The numerical technique proved to be effective and applicable to the soil classification process.
Resumo:
The elastic moduli of vortex crystals in anisotropic superconductors are frequently involved in the investigation of their phase diagram and transport properties. We provide a detailed analysis of the harmonic eigenvalues (normal modes) of the vortex lattice for general values of the magnetic field strength, going beyond the elastic continuum regime. The detailed behavior of these wave-vector-dependent eigenvalues within the Brillouin zone (BZ), is compared with several frequently used approximations that we also recalculate. Throughout the BZ, transverse modes are less costly than their longitudinal counterparts, and there is an angular dependence which becomes more marked close to the zone boundary. Based on these results, we propose an analytic correction to the nonlocal continuum formulas which fits quite well the numerical behavior of the eigenvalues in the London regime. We use this approximate expression to calculate thermal fluctuations and the full melting line (according to Lindeman's criterion) for various values of the anisotropy parameter.
Resumo:
Les instabilités engendrées par des gradients de densité interviennent dans une variété d'écoulements. Un exemple est celui de la séquestration géologique du dioxyde de carbone en milieux poreux. Ce gaz est injecté à haute pression dans des aquifères salines et profondes. La différence de densité entre la saumure saturée en CO2 dissous et la saumure environnante induit des courants favorables qui le transportent vers les couches géologiques profondes. Les gradients de densité peuvent aussi être la cause du transport indésirable de matières toxiques, ce qui peut éventuellement conduire à la pollution des sols et des eaux. La gamme d'échelles intervenant dans ce type de phénomènes est très large. Elle s'étend de l'échelle poreuse où les phénomènes de croissance des instabilités s'opèrent, jusqu'à l'échelle des aquifères à laquelle interviennent les phénomènes à temps long. Une reproduction fiable de la physique par la simulation numérique demeure donc un défi en raison du caractère multi-échelles aussi bien au niveau spatial et temporel de ces phénomènes. Il requiert donc le développement d'algorithmes performants et l'utilisation d'outils de calculs modernes. En conjugaison avec les méthodes de résolution itératives, les méthodes multi-échelles permettent de résoudre les grands systèmes d'équations algébriques de manière efficace. Ces méthodes ont été introduites comme méthodes d'upscaling et de downscaling pour la simulation d'écoulements en milieux poreux afin de traiter de fortes hétérogénéités du champ de perméabilité. Le principe repose sur l'utilisation parallèle de deux maillages, le premier est choisi en fonction de la résolution du champ de perméabilité (grille fine), alors que le second (grille grossière) est utilisé pour approximer le problème fin à moindre coût. La qualité de la solution multi-échelles peut être améliorée de manière itérative pour empêcher des erreurs trop importantes si le champ de perméabilité est complexe. Les méthodes adaptatives qui restreignent les procédures de mise à jour aux régions à forts gradients permettent de limiter les coûts de calculs additionnels. Dans le cas d'instabilités induites par des gradients de densité, l'échelle des phénomènes varie au cours du temps. En conséquence, des méthodes multi-échelles adaptatives sont requises pour tenir compte de cette dynamique. L'objectif de cette thèse est de développer des algorithmes multi-échelles adaptatifs et efficaces pour la simulation des instabilités induites par des gradients de densité. Pour cela, nous nous basons sur la méthode des volumes finis multi-échelles (MsFV) qui offre l'avantage de résoudre les phénomènes de transport tout en conservant la masse de manière exacte. Dans la première partie, nous pouvons démontrer que les approximations de la méthode MsFV engendrent des phénomènes de digitation non-physiques dont la suppression requiert des opérations de correction itératives. Les coûts de calculs additionnels de ces opérations peuvent toutefois être compensés par des méthodes adaptatives. Nous proposons aussi l'utilisation de la méthode MsFV comme méthode de downscaling: la grille grossière étant utilisée dans les zones où l'écoulement est relativement homogène alors que la grille plus fine est utilisée pour résoudre les forts gradients. Dans la seconde partie, la méthode multi-échelle est étendue à un nombre arbitraire de niveaux. Nous prouvons que la méthode généralisée est performante pour la résolution de grands systèmes d'équations algébriques. Dans la dernière partie, nous focalisons notre étude sur les échelles qui déterminent l'évolution des instabilités engendrées par des gradients de densité. L'identification de la structure locale ainsi que globale de l'écoulement permet de procéder à un upscaling des instabilités à temps long alors que les structures à petite échelle sont conservées lors du déclenchement de l'instabilité. Les résultats présentés dans ce travail permettent d'étendre les connaissances des méthodes MsFV et offrent des formulations multi-échelles efficaces pour la simulation des instabilités engendrées par des gradients de densité. - Density-driven instabilities in porous media are of interest for a wide range of applications, for instance, for geological sequestration of CO2, during which CO2 is injected at high pressure into deep saline aquifers. Due to the density difference between the C02-saturated brine and the surrounding brine, a downward migration of CO2 into deeper regions, where the risk of leakage is reduced, takes place. Similarly, undesired spontaneous mobilization of potentially hazardous substances that might endanger groundwater quality can be triggered by density differences. Over the last years, these effects have been investigated with the help of numerical groundwater models. Major challenges in simulating density-driven instabilities arise from the different scales of interest involved, i.e., the scale at which instabilities are triggered and the aquifer scale over which long-term processes take place. An accurate numerical reproduction is possible, only if the finest scale is captured. For large aquifers, this leads to problems with a large number of unknowns. Advanced numerical methods are required to efficiently solve these problems with today's available computational resources. Beside efficient iterative solvers, multiscale methods are available to solve large numerical systems. Originally, multiscale methods have been developed as upscaling-downscaling techniques to resolve strong permeability contrasts. In this case, two static grids are used: one is chosen with respect to the resolution of the permeability field (fine grid); the other (coarse grid) is used to approximate the fine-scale problem at low computational costs. The quality of the multiscale solution can be iteratively improved to avoid large errors in case of complex permeability structures. Adaptive formulations, which restrict the iterative update to domains with large gradients, enable limiting the additional computational costs of the iterations. In case of density-driven instabilities, additional spatial scales appear which change with time. Flexible adaptive methods are required to account for these emerging dynamic scales. The objective of this work is to develop an adaptive multiscale formulation for the efficient and accurate simulation of density-driven instabilities. We consider the Multiscale Finite-Volume (MsFV) method, which is well suited for simulations including the solution of transport problems as it guarantees a conservative velocity field. In the first part of this thesis, we investigate the applicability of the standard MsFV method to density- driven flow problems. We demonstrate that approximations in MsFV may trigger unphysical fingers and iterative corrections are necessary. Adaptive formulations (e.g., limiting a refined solution to domains with large concentration gradients where fingers form) can be used to balance the extra costs. We also propose to use the MsFV method as downscaling technique: the coarse discretization is used in areas without significant change in the flow field whereas the problem is refined in the zones of interest. This enables accounting for the dynamic change in scales of density-driven instabilities. In the second part of the thesis the MsFV algorithm, which originally employs one coarse level, is extended to an arbitrary number of coarse levels. We prove that this keeps the MsFV method efficient for problems with a large number of unknowns. In the last part of this thesis, we focus on the scales that control the evolution of density fingers. The identification of local and global flow patterns allows a coarse description at late times while conserving fine-scale details during onset stage. Results presented in this work advance the understanding of the Multiscale Finite-Volume method and offer efficient dynamic multiscale formulations to simulate density-driven instabilities. - Les nappes phréatiques caractérisées par des structures poreuses et des fractures très perméables représentent un intérêt particulier pour les hydrogéologues et ingénieurs environnementaux. Dans ces milieux, une large variété d'écoulements peut être observée. Les plus communs sont le transport de contaminants par les eaux souterraines, le transport réactif ou l'écoulement simultané de plusieurs phases non miscibles, comme le pétrole et l'eau. L'échelle qui caractérise ces écoulements est définie par l'interaction de l'hétérogénéité géologique et des processus physiques. Un fluide au repos dans l'espace interstitiel d'un milieu poreux peut être déstabilisé par des gradients de densité. Ils peuvent être induits par des changements locaux de température ou par dissolution d'un composé chimique. Les instabilités engendrées par des gradients de densité revêtent un intérêt particulier puisque qu'elles peuvent éventuellement compromettre la qualité des eaux. Un exemple frappant est la salinisation de l'eau douce dans les nappes phréatiques par pénétration d'eau salée plus dense dans les régions profondes. Dans le cas des écoulements gouvernés par les gradients de densité, les échelles caractéristiques de l'écoulement s'étendent de l'échelle poreuse où les phénomènes de croissance des instabilités s'opèrent, jusqu'à l'échelle des aquifères sur laquelle interviennent les phénomènes à temps long. Etant donné que les investigations in-situ sont pratiquement impossibles, les modèles numériques sont utilisés pour prédire et évaluer les risques liés aux instabilités engendrées par les gradients de densité. Une description correcte de ces phénomènes repose sur la description de toutes les échelles de l'écoulement dont la gamme peut s'étendre sur huit à dix ordres de grandeur dans le cas de grands aquifères. Il en résulte des problèmes numériques de grande taille qui sont très couteux à résoudre. Des schémas numériques sophistiqués sont donc nécessaires pour effectuer des simulations précises d'instabilités hydro-dynamiques à grande échelle. Dans ce travail, nous présentons différentes méthodes numériques qui permettent de simuler efficacement et avec précision les instabilités dues aux gradients de densité. Ces nouvelles méthodes sont basées sur les volumes finis multi-échelles. L'idée est de projeter le problème original à une échelle plus grande où il est moins coûteux à résoudre puis de relever la solution grossière vers l'échelle de départ. Cette technique est particulièrement adaptée pour résoudre des problèmes où une large gamme d'échelle intervient et évolue de manière spatio-temporelle. Ceci permet de réduire les coûts de calculs en limitant la description détaillée du problème aux régions qui contiennent un front de concentration mobile. Les aboutissements sont illustrés par la simulation de phénomènes tels que l'intrusion d'eau salée ou la séquestration de dioxyde de carbone.
Resumo:
We consider mean-first-passage times and transition rates in bistable systems driven by white shot noise. We obtain closed analytical expressions, asymptotic approximations, and numerical simulations in two cases of interest: (i) jumps sizes exponentially distributed and (ii) jumps of the same size.
Resumo:
River bifurcations are key nodes within braided river systems controlling the flow and sediment partitioning and therefore the dynamics of the river braiding process. Recent research has shown that certain geometrical configurations induce instabilities that lead to downstream mid-channel bar formation and the formation of bifurcations. However, we currently have a poor understanding of the flow division process within bifurcations and the flow dynamics in the downstream bifurcates, both of which are needed to understand bifurcation stability. This paper presents results of a numerical sensitivity experiment undertaken using computational fluid dynamics (CFD) with the purpose of understanding the flow dynamics of a series of idealized bifurcations. A geometric sensitivity analysis is undertaken for a range of channel slopes (0.005 to 0.03), bifurcation angles (22 degrees to 42 degrees) and a restricted set of inflow conditions based upon simulating flow through meander bends with different curvature on the flow field dynamics through the bifurcation. The results demonstrate that the overall slope of the bifurcation affects the velocity of flow through the bifurcation and when slope asymmetry is introduced, the flow structures in the bifurcation are modified. In terms of bifurcation evolution the most important observation appears to be that once slope asymmetry is greater than 0.2 the flow within the steep bifurcate shows potential instability and the potential for alternate channel bar formation. Bifurcation angle also defines the flow structures within the bifurcation with an increase in bifurcation angle increasing the flow velocity down both bifurcates. However, redistributive effects of secondary circulation caused by upstream curvature can very easily counter the effects of local bifurcation characteristics. Copyright (C) 2011 John Wiley & Sons, Ltd.
Resumo:
[cat] En aquest article estudiem estratègies “comprar i mantenir” per a problemes d’optimitzar la riquesa final en un context multi-període. Com que la riquesa final és una suma de variables aleatòries dependents, on cadascuna d’aquestes correspon a una quantitat de capital que s’ha invertit en un actiu particular en una data determinada, en primer lloc considerem aproximacions que redueixen l’aleatorietat multivariant al cas univariant. A continuació, aquestes aproximacions es fan servir per determinar les estratègies “comprar i mantenir” que optimitzen, per a un nivell de probabilitat donat, el VaR i el CLTE de la funció de distribució de la riquesa final. Aquest article complementa el treball de Dhaene et al. (2005), on es van considerar estratègies de reequilibri constant.
Resumo:
INTRODUCTION: The importance of the micromovements in the mechanism of aseptic loosening is clinically difficult to evaluate. To complete the analysis of a series of total knee arthroplasties (TKA), we used a tridimensional numerical model to study the micromovements of the tibial implant. MATERIAL AND METHODS: Fifty one patients (with 57 cemented Porous Coated Anatomic TKAs) were reviewed (mean follow-up 4.5 year). Radiolucency at the tibial bone-cement interface was sought on the AP radiographs and divided in 7 areas. The distribution of the radiolucency was then correlated with the axis of the lower limb as measured on the orthoradiograms. The tridimensional numerical model is based on the finite element method. It allowed the measurement of the cemented prosthetic tibial implant's displacements and the micromovements generated at bone-ciment interface. A total load (2000 Newton) was applied at first vertically and asymetrically on the tibial plateau, thereby simulating an axial deviation of the lower limbs. The vector's posterior inclination then permitted the addition of a tangential component to the axial load. This type of effort is generated by complex biomechanical phenomena such as knee flexion. RESULTS: 81 per cent of the 57 knees had a radiolucent line of at least 1 mm, at one or more of the tibial cement-epiphysis jonctional areas. The distribution of these lucent lines showed that they came out more frequently at the periphery of the implant. The lucent lines appeared most often under the unloaded margin of the tibial plateau, when axial deviation of lower limbs was present. Numerical simulations showed that asymetrical loading on the tibial plateau induced a subsidence of the loaded margin (0-100 microns) and lifting off at the opposite border (0-70 microns). The postero-anterior tangential component induced an anterior displacement of the tibial implant (160-220 microns), and horizontal micromovements with non homogenous distribution at the bone-ciment interface (28-54 microns). DISCUSSION: Comparison of clinical and numerical results showed a relation between the development of radiolucent lines and the unloading of the tibial implant's margin. The deleterious effect of lower limbs' axial deviation is thereby proven. The irregular distribution of lucent lines under the tibial plateau was similar of the micromovements' repartition at the bone-cement interface when tangential forces were present. A causative relation between the two phenomenaes could not however be established. Numerical simulation is a truly useful method of study; it permits to calculate micromovements which are relative, non homogenous and of very low amplitude. However, comparative clinical studies remain as essential to ensure the credibility of results.
Resumo:
Regulatory gene networks contain generic modules, like those involving feedback loops, which are essential for the regulation of many biological functions (Guido et al. in Nature 439:856-860, 2006). We consider a class of self-regulated genes which are the building blocks of many regulatory gene networks, and study the steady-state distribution of the associated Gillespie algorithm by providing efficient numerical algorithms. We also study a regulatory gene network of interest in gene therapy, using mean-field models with time delays. Convergence of the related time-nonhomogeneous Markov chain is established for a class of linear catalytic networks with feedback loops.
Resumo:
Coordination games are important to explain efficient and desirable social behavior. Here we study these games by extensive numerical simulation on networked social structures using an evolutionary approach. We show that local network effects may promote selection of efficient equilibria in both pure and general coordination games and may explain social polarization. These results are put into perspective with respect to known theoretical results. The main insight we obtain is that clustering, and especially community structure in social networks has a positive role in promoting socially efficient outcomes.
Resumo:
The objective of this work was to develop a simplified numerical procedure for the estimation of accumulated monthly hours of solarized soil temperatures. The proposed model requires monthly means of daily solar radiation and maximum air temperature as input data, and a daily pattern of temperature variation assumed to be sine-shaped. The procedure was verified using observations made during the years 1992 and 1993 in Jaguariúna, SP. The proposed procedure can predict monthly temperature hours at 10 cm depth in the solarized soil, with acceptable accuracy, in the region for which it was developed.
Resumo:
The flow of two immiscible fluids through a porous medium depends on the complex interplay between gravity, capillarity, and viscous forces. The interaction between these forces and the geometry of the medium gives rise to a variety of complex flow regimes that are difficult to describe using continuum models. Although a number of pore-scale models have been employed, a careful investigation of the macroscopic effects of pore-scale processes requires methods based on conservation principles in order to reduce the number of modeling assumptions. In this work we perform direct numerical simulations of drainage by solving Navier-Stokes equations in the pore space and employing the Volume Of Fluid (VOF) method to track the evolution of the fluid-fluid interface. After demonstrating that the method is able to deal with large viscosity contrasts and model the transition from stable flow to viscous fingering, we focus on the macroscopic capillary pressure and we compare different definitions of this quantity under quasi-static and dynamic conditions. We show that the difference between the intrinsic phase-average pressures, which is commonly used as definition of Darcy-scale capillary pressure, is subject to several limitations and it is not accurate in presence of viscous effects or trapping. In contrast, a definition based on the variation of the total surface energy provides an accurate estimate of the macroscopic capillary pressure. This definition, which links the capillary pressure to its physical origin, allows a better separation of viscous effects and does not depend on the presence of trapped fluid clusters.