944 resultados para Nonlinear Schrodinger model
Resumo:
Experimental observations of the time-dependent mechanical responses of collagenous tissues have demonstrated behavior that deviates from standard treatments of linear or quasi-linear viscoelasticity. In particular, time-dependent deformation can be strongly coupled to strain level, and strain-rate independence can be observed under monotonic loading, even for a tissue with dramatic stress relaxation. It was postulated that this nonlinearity is fundamentally associated with gradual recruitment of individual collagen fibrils during applied mechanical loading. Based on previously observed experimental results for the time-dependent response of collagenous soft tissues, a model is developed to describe the mechanical behavior of these tissues under uniaxial loading. Tissue stresses, under applied strain-controlled loading, are assumed to be a sum of elastic and viscoelastic stress contributions. The relative contributions of elastic and viscoelastic stresses is assumed to vary with strain level, leading to strain- and time-dependent mechanical behavior. The model formulation is examined under conditions of monotonic loading at varying constant strain rates and stress-relaxation at different applied strain levels. The model is compared with experimental data for a membranous biological soft tissue, the amniotic sac, and is found to agree well with experimental results. The limiting behavior of the novel model, at large strains relative to the collagen recruitment, is consistent with the quasi-linear viscoelastic approach. © 2006 Materials Research Society.
Resumo:
The nonlinear Kosovic, and mixed Leray and α subgrid scale models are contrasted with linear Smagorinsky and Yoshizawa Large Eddy Simulations for a Re = 4000 plane jet simulation. Comparisons are made with Direct Numerical Simulation data and measurements. Global properties of the jet such as the spreading and centreline velocity decay rates are investigated. The mean-flow and turbulence parameters in the self-similar region are also studied. All models generally give encouraging agreement with the Direct Numerical Simulation data and reliable measurements. Solution differences for the models are relatively minor, none giving clear improvements for all data comparisons.
Resumo:
Gaussian processes are gaining increasing popularity among the control community, in particular for the modelling of discrete time state space systems. However, it has not been clear how to incorporate model information, in the form of known state relationships, when using a Gaussian process as a predictive model. An obvious example of known prior information is position and velocity related states. Incorporation of such information would be beneficial both computationally and for faster dynamics learning. This paper introduces a method of achieving this, yielding faster dynamics learning and a reduction in computational effort from O(Dn2) to O((D - F)n2) in the prediction stage for a system with D states, F known state relationships and n observations. The effectiveness of the method is demonstrated through its inclusion in the PILCO learning algorithm with application to the swing-up and balance of a torque-limited pendulum and the balancing of a robotic unicycle in simulation. © 2012 IEEE.
Resumo:
The objective of the research conducted by the authors is to explore the feasibility of determining reliable in situ values of shear modulus as a function of strain. In this paper the meaning of the material stiffness obtained from impact and harmonic excitation tests on a surface slab is discussed. A one-dimensional discrete model with the nonlinear material stiffness is used for this purpose. When a static load is applied followed by an impact excitation, if the amplitude of the impact is very small, the measured wave velocity using the cross-correlation indicates the wave velocity calculated from the tangent modulus corresponding to the state of stress caused by the applied static load. The duration of the impact affects the magnitude of the displacement and the particle velocity but has very little effect on the estimation of the wave velocity for the magnitudes considered herein. When a harmonic excitation is applied, the cross-correlation of the time histories at different depths estimates a wave velocity close to the one calculated from the secant modulus in the stress-strain loop under steady-state condition. Copyright © 2008 John Wiley & Sons, Ltd.
Resumo:
Plugging is well known to be a major cause of instability in industrial cement mills. A simple nonlinear model able to simulate the plugging phenomenon is presented. It is shown how a nonlinear robust controller can be designed in order to fully prevent the mill from plugging.
Resumo:
Several methods for estimating the potential impacts caused by multiple probabilistic risks have been suggested. These existing methods mostly rely on the weight sum algorithm to address the need for integrated risk assessment. This paper develops a nonlinear model to perform such an assessment. The joint probability algorithm has been applied to the model development. An application of the developed model in South five-island of Changdao National Nature Reserve, China, combining remote sensing data and a GIS technique, provides a reasonable risk assessment. Based on the case study, we discuss the feasibility of the model. We propose that the model has the potential for use in identifying the regional primary stressor, investigating the most vulnerable habitat, and assessing the integrated impact of multiple stressors. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
With the intermediate-complexity Zebiak-Cane model, we investigate the 'spring predictability barrier' (SPB) problem for El Nino events by tracing the evolution of conditional nonlinear optimal perturbation (CNOP), where CNOP is superimposed on the El Nino events and acts as the initial error with the biggest negative effect on the El Nino prediction. We show that the evolution of CNOP-type errors has obvious seasonal dependence and yields a significant SPB, with the most severe occurring in predictions made before the boreal spring in the growth phase of El Nino. The CNOP-type errors can be classified into two types: one possessing a sea-surface-temperature anomaly pattern with negative anomalies in the equatorial central-western Pacific, positive anomalies in the equatorial eastern Pacific, and a thermocline depth anomaly pattern with positive anomalies along the Equator, and another with patterns almost opposite to those of the former type. In predictions through the spring in the growth phase of El Nino, the initial error with the worst effect on the prediction tends to be the latter type of CNOP error, whereas in predictions through the spring in the decaying phase, the initial error with the biggest negative effect on the prediction is inclined to be the former type of CNOP error. Although the linear singular vector (LSV)-type errors also have patterns similar to the CNOP-type errors, they cover a more localized area than the CNOP-type errors and cause a much smaller prediction error, yielding a less significant SPB. Random errors in the initial conditions are also superimposed on El Nino events to investigate the SPB. We find that, whenever the predictions start, the random errors neither exhibit an obvious season-dependent evolution nor yield a large prediction error, and thus may not be responsible for the SPB phenomenon for El Nino events. These results suggest that the occurrence of the SPB is closely related to particular initial error patterns. The two kinds of CNOP-type error are most likely to cause a significant SPB. They have opposite signs and, consequently, opposite growth behaviours, a result which may demonstrate two dynamical mechanisms of error growth related to SPB: in one case, the errors grow in a manner similar to El Nino; in the other, the errors develop with a tendency opposite to El Nino. The two types of CNOP error may be most likely to provide the information regarding the 'sensitive area' of El Nino-Southern Oscillation (ENSO) predictions. If these types of initial error exist in realistic ENSO predictions and if a target method or a data assimilation approach can filter them, the ENSO forecast skill may be improved. Copyright (C) 2009 Royal Meteorological Society
Resumo:
A multi-plate (NIP) mathematical model was proposed by frontal analysis to evaluate nonlinear chromatographic performance. One of its advantages is that the parameters may be easily calculated from experimental data. Moreover, there is a good correlation between it and the equilibrium-dispersive (E-D) or Thomas models. This shows that it can well accommodate both types of band broadening that is comprised of either diffusion-dominated processes or kinetic sorption processes. The MP model can well describe experimental breakthrough curves that were obtained from membrane affinity chromatography and column reversed-phase liquid chromatography. Furthermore, the coefficients of mass transfer may be calculated according to the relationship between the MP model and the E-D or Thomas models. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
This article describes a nonlinear model of neural processing in the vertebrate retina, comprising model photoreceptors, model push-pull bipolar cells, and model ganglion cells. Previous analyses and simulations have shown that with a choice of parameters that mimics beta cells, the model exhibits X-like linear spatial summation (null response to contrast-reversed gratings) in spite of photoreceptor nonlinearities; on the other hand, a choice of parameters that mimics alpha cells leads to Y-like frequency doubling. This article extends the previous work by showing that the model can replicate qualitatively many of the original findings on X and Y cells with a fixed choice of parameters. The results generally support the hypothesis that X and Y cells can be seen as functional variants of a single neural circuit. The model also suggests that both depolarizing and hyperpolarizing bipolar cells converge onto both ON and OFF ganglion cell types. The push-pull connectivity enables ganglion cells to remain sensitive to deviations about the mean output level of nonlinear photoreceptors. These and other properties of the push-pull model are discussed in the general context of retinal processing of spatiotemporal luminance patterns.
Resumo:
In the presence of a chemical potential, the physics of level crossings leads to singularities at zero temperature, even when the spatial volume is finite. These singularities are smoothed out at a finite temperature but leave behind nontrivial finite size effects which must be understood in order to extract thermodynamic quantities using Monte Carlo methods, particularly close to critical points. We illustrate some of these issues using the classical nonlinear O(2) sigma model with a coupling β and chemical potential μ on a 2+1-dimensional Euclidean lattice. In the conventional formulation this model suffers from a sign problem at nonzero chemical potential and hence cannot be studied with the Wolff cluster algorithm. However, when formulated in terms of the worldline of particles, the sign problem is absent, and the model can be studied efficiently with the "worm algorithm." Using this method we study the finite size effects that arise due to the chemical potential and develop an effective quantum mechanical approach to capture the effects. As a side result we obtain energy levels of up to four particles as a function of the box size and uncover a part of the phase diagram in the (β,μ) plane. © 2010 The American Physical Society.
Resumo:
The identification of nonlinear dynamic systems using linear-in-the-parameters models is studied. A fast recursive algorithm (FRA) is proposed to select both the model structure and to estimate the model parameters. Unlike orthogonal least squares (OLS) method, FRA solves the least-squares problem recursively over the model order without requiring matrix decomposition. The computational complexity of both algorithms is analyzed, along with their numerical stability. The new method is shown to require much less computational effort and is also numerically more stable than OLS.