997 resultados para Nonequilibrium statistical mechanics
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The Fokker-Planck equation is studied through its relation to a Schrodinger-type equation. The advantage of this combination is that we can construct the probability distribution of the Fokker-Planck equation by using well-known solutions of the Schrodinger equation. By making use of such a combination, we present the solution of the Fokker-Planck equation for a bistable potential related to a double oscillator. Thus, we can observe the temporal evolution of the system describing its dynamic properties such as the time tau to overcome the barrier. By calculating the rates k = 1/tau as a function of the inverse scaled temperature 1/D, where D is the diffusion coefficient, we compare the aspect of the curve k x 1/D, with the ones obtained from other studies related to four different kinds of activated process. We notice that there are similarities in some ranges of the scaled temperatures, where the different processes follow the Arrhenius behavior. We propose that the type of bistable potential used in this study may be used, qualitatively, as a simple model, whose rates share common features with the rates of some single rate-limited thermally activated processes. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this work we present a discussion and the results of the simulation of disease spread using the Monte Carlo method. The dissemination model is the SIR model and presents as main characteristic the disease evolution among individuals of the population subdivided into three groups: susceptible (S), infected (I) and recovered (R). The technique used is based on the introduction of transition probabilities S-> I and I->R to do the spread of the disease, they are governed by a Poisson distribution. The simulation of the spread of disease was based on the randomness introduced, taking into account two basic parameters of the model, the power of infection and average time of the disease. Considering appropriate values of these parameters, the results are presented graphically and analysis of these results gives information on a group of individuals react to the changes of these parameters and what are the chances of a disease becoming a pandemic
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
We show that the parametrized Wave-Packet Phase Space representation, which has been studied earlier by one of the authors, is equivalent to a Squeezed States Phase Space Representation of quantum mechanics. © 1988.
Resumo:
The phase diagram of an asymmetric N = 3 Ashkin-Teller model is obtained by a numerical analysis which combines Monte Carlo renormalization group and reweighting techniques. Present results reveal several differences with those obtained by mean-field calculations and a Hamiltonian approach. In particular, we found Ising critical exponents along a line where Goldschmidt has located the Kosterlitz-Thouless multicritical point. On the other hand, we did find nonuniversal exponents along another transition line. Symmetry breaking in this case is very similar to the N = 2 case, since the symmetries associated to only two of the Ising variables are broken. However, for large values of the coupling constant ratio XW = W/K, when the only broken symmetry is of a hidden variable, we detected first-order phase transitions giving evidence supporting the existence of a multicritical point, as suggested by Goldschmidt, but in a different region of the phase diagram. © 2002 Elsevier Science B.V. All rights reserved.
Resumo:
We present both analytical and numerical results on the position of partition function zeros on the complex magnetic field plane of the q=2 state (Ising) and the q=3 state Potts model defined on phi(3) Feynman diagrams (thin random graphs). Our analytic results are based on the ideas of destructive interference of coexisting phases and low temperature expansions. For the case of the Ising model, an argument based on a symmetry of the saddle point equations leads us to a nonperturbative proof that the Yang-Lee zeros are located on the unit circle, although no circle theorem is known in this case of random graphs. For the q=3 state Potts model, our perturbative results indicate that the Yang-Lee zeros lie outside the unit circle. Both analytic results are confirmed by finite lattice numerical calculations.
Resumo:
A mapping scheme is presented which takes quantum operators associated to bosonic degrees of freedom into complex phase space integral kernel representatives. The procedure consists of using the Schrödinger squeezed state as the starting point for the construction of the integral mapping kernel which, due to its inherent structure, is suited for the description of second quantized operators. Products and commutators of operators have their representatives explicitly written which reveal new details when compared to the usual q-p phase space description. The classical limit of the equations of motion for the canonical pair q-p is discussed in connection with the effect of squeezing the quantum phase space cellular structure. © 1993.
Resumo:
An extended Weyl-Wigner transformation which maps operators onto periodic discrete quantum phase space representatives is discussed in which a mod N invariance is explicitly implemented. The relevance of this invariance for the mapped expression of products of operators is discussed. © 1992.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Física - IFT
Resumo:
Knowing which individuals can be more efficient in spreading a pathogen throughout a determinate environment is a fundamental question in disease control. Indeed, over recent years the spread of epidemic diseases and its relationship with the topology of the involved system have been a recurrent topic in complex network theory, taking into account both network models and real-world data. In this paper we explore possible correlations between the heterogeneous spread of an epidemic disease governed by the susceptible-infected-recovered (SIR) model, and several attributes of the originating vertices, considering Erdos-Renyi (ER), Barabasi-Albert (BA) and random geometric graphs (RGG), as well as a real case study, the US air transportation network, which comprises the 500 busiest airports in the US along with inter-connections. Initially, the heterogeneity of the spreading is achieved by considering the RGG networks, in which we analytically derive an expression for the distribution of the spreading rates among the established contacts, by assuming that such rates decay exponentially with the distance that separates the individuals. Such a distribution is also considered for the ER and BA models, where we observe topological effects on the correlations. In the case of the airport network, the spreading rates are empirically defined, assumed to be directly proportional to the seat availability. Among both the theoretical and real networks considered, we observe a high correlation between the total epidemic prevalence and the degree, as well as the strength and the accessibility of the epidemic sources. For attributes such as the betweenness centrality and the k-shell index, however, the correlation depends on the topology considered.
Enhancement of Nematic Order and Global Phase Diagram of a Lattice Model for Coupled Nematic Systems
Resumo:
We use an infinite-range Maier-Saupe model, with two sets of local quadrupolar variables and restricted orientations, to investigate the global phase diagram of a coupled system of two nematic subsystems. The free energy and the equations of state are exactly calculated by standard techniques of statistical mechanics. The nematic-isotropic transition temperature of system A increases with both the interaction energy among mesogens of system B, and the two-subsystem coupling J. This enhancement of the nematic phase is manifested in a global phase diagram in terms of the interaction parameters and the temperature T. We make some comments on the connections of these results with experimental findings for a system of diluted ferroelectric nanoparticles embedded in a nematic liquid-crystalline environment.