287 resultados para Noncommutative spacetime


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A broad sector of literature focuses on the relationship between fluid dynamics and gravitational systems. This thesis presents results that suggest the existence of a new kind of fluid/gravity duality not based on the holographic principle. The goal is to provide tools that allow us to systematically unearth hidden symmetries for reduced models of cosmology. The focus is on the field space of these models, i.e. the superspace. In fact, conformal isometries of the supermetric leave geodesics in the field space unaltered; this leads to symmetries of the models. An innovative aspect is the use of the Eisenhart-Duval’s lift. Using this method, systems constrained by a potential can be treated as free ones. Moreover, charges explicitly dependent on time, i.e. dynamical, can be found. A detailed analysis is carried out on three basic models of homogenous cosmology: i) flat Friedmann-Lemaître-Robertson-Walker’s isotropic universe filled with a massless scalar field; ii) Schwarzschild’s black hole mechanics and its extension to vacuum (A)dS gravity; iii) Bianchi’s anisotropic type I universe with a massless scalar field. The results show the presence of a hidden Schrödinger’s symmetry which, being intrinsic to both Navier-Stokes’ and Schrödinger’s equations, indicates a correspondence between cosmology and hydrodynamics. Furthermore, the central extension of this algebra explicitly relates two concepts. The first is the number of particles coming from the fluid picture; while the second is the ratio between the IR and UV cutoffs that weighs how much a theory has of “classical” over “quantum”. This suggests a spacetime that emerges from an underlying world which is described by quantum building blocks. These quanta statistically conspire to appear as gravitational phenomena from a macroscopic point of view.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A seguito di recenti risultati nel campo dell’Astrofisica, con questo elaborato ci si propone di approfondire il ruolo della viscosità in una classe di modelli cosmologici. La discussione ha lo scopo di generalizzare delle tecniche applicate con successo nello studio dei fluidi ideali a sistemi dove anche la viscosità é un parametro che necessita di essere largamente preso in considerazione. Nello specifico, ci si serve di strumenti computazionali e geometrici e di teoria delle equazioni differenziali alle derivate parziali per comprendere, da un punto di vista matematico, come associare le Equazioni di Einstein ai fluidi in specifici background cosmologici. Questo elaborato parte dallo studio dei fluidi ideali in un background di tipo FLRW al fine di generalizzarlo a fluidi viscosi che scorrono in un background di tipo Bianchi I. Infine si indicano alcuni problemi ancora aperti relativi al caso dissipativo e le possibili strategie risolutive di tali questioni.