961 resultados para Non-reversible stochastic dynamics


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modeling of water movement in non-saturated soil usually requires a large number of parameters and variables, such as initial soil water content, saturated water content and saturated hydraulic conductivity, which can be assessed relatively easily. Dimensional flow of water in the soil is usually modeled by a nonlinear partial differential equation, known as the Richards equation. Since this equation cannot be solved analytically in certain cases, one way to approach its solution is by numerical algorithms. The success of numerical models in describing the dynamics of water in the soil is closely related to the accuracy with which the water-physical parameters are determined. That has been a big challenge in the use of numerical models because these parameters are generally difficult to determine since they present great spatial variability in the soil. Therefore, it is necessary to develop and use methods that properly incorporate the uncertainties inherent to water displacement in soils. In this paper, a model based on fuzzy logic is used as an alternative to describe water flow in the vadose zone. This fuzzy model was developed to simulate the displacement of water in a non-vegetated crop soil during the period called the emergency phase. The principle of this model consists of a Mamdani fuzzy rule-based system in which the rules are based on the moisture content of adjacent soil layers. The performances of the results modeled by the fuzzy system were evaluated by the evolution of moisture profiles over time as compared to those obtained in the field. The results obtained through use of the fuzzy model provided satisfactory reproduction of soil moisture profiles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Semiclassical Einstein-Langevin equations for arbitrary small metric perturbations conformally coupled to a massless quantum scalar field in a spatially flat cosmological background are derived. Use is made of the fact that for this problem the in-in or closed time path effective action is simply related to the Feynman-Vernon influence functional which describes the effect of the ``environment,'' the quantum field which is coarse grained here, on the ``system,'' the gravitational field which is the field of interest. This leads to identify the dissipation and noise kernels in the in-in effective action, and to derive a fluctuation-dissipation relation. A tensorial Gaussian stochastic source which couples to the Weyl tensor of the spacetime metric is seen to modify the usual semiclassical equations which can be veiwed now as mean field equsations. As a simple application we derive the correlation functions of the stochastic metric fluctuations produced in a flat spacetime with small metric perturbations due to the quantum fluctuations of the matter field coupled to these perturbations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

First-passage time statistics for non-Markovian processes have heretofore only been developed for processes driven by dichotomous fluctuations that are themselves Markov. Herein we develop a new method applicable to Markov and non-Markovian dichotomous fluctuations and calculate analytic mean first-passage times for particular examples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Our previously developed stochastic trajectory analysis technique has been applied to the calculation of first-passage time statistics of bound processes. Explicit results are obtained for linearly bound processes driven by dichotomous fluctuations having exponential and rectangular temporal distributions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The stochastic-trajectory-analysis technique is applied to the calculation of the mean¿first-passage-time statistics for processes driven by external shot noise. Explicit analytical expressions are obtained for free and bound processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We show the appearance of spatiotemporal stochastic resonance in the Swift-Hohenberg equation. This phenomenon emerges when a control parameter varies periodically in time around the bifurcation point. By using general scaling arguments and by taking into account the common features occurring in a bifurcation, we outline possible manifestations of the phenomenon in other pattern-forming systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Traditionally, the common reserving methods used by the non-life actuaries are based on the assumption that future claims are going to behave in the same way as they did in the past. There are two main sources of variability in the processus of development of the claims: the variability of the speed with which the claims are settled and the variability between the severity of the claims from different accident years. High changes in these processes will generate distortions in the estimation of the claims reserves. The main objective of this thesis is to provide an indicator which firstly identifies and quantifies these two influences and secondly to determine which model is adequate for a specific situation. Two stochastic models were analysed and the predictive distributions of the future claims were obtained. The main advantage of the stochastic models is that they provide measures of variability of the reserves estimates. The first model (PDM) combines one conjugate family Dirichlet - Multinomial with the Poisson distribution. The second model (NBDM) improves the first one by combining two conjugate families Poisson -Gamma (for distribution of the ultimate amounts) and Dirichlet Multinomial (for distribution of the incremental claims payments). It was found that the second model allows to find the speed variability in the reporting process and development of the claims severity as function of two above mentioned distributions' parameters. These are the shape parameter of the Gamma distribution and the Dirichlet parameter. Depending on the relation between them we can decide on the adequacy of the claims reserve estimation method. The parameters have been estimated by the Methods of Moments and Maximum Likelihood. The results were tested using chosen simulation data and then using real data originating from the three lines of business: Property/Casualty, General Liability, and Accident Insurance. These data include different developments and specificities. The outcome of the thesis shows that when the Dirichlet parameter is greater than the shape parameter of the Gamma, resulting in a model with positive correlation between the past and future claims payments, suggests the Chain-Ladder method as appropriate for the claims reserve estimation. In terms of claims reserves, if the cumulated payments are high the positive correlation will imply high expectations for the future payments resulting in high claims reserves estimates. The negative correlation appears when the Dirichlet parameter is lower than the shape parameter of the Gamma, meaning low expected future payments for the same high observed cumulated payments. This corresponds to the situation when claims are reported rapidly and fewer claims remain expected subsequently. The extreme case appears in the situation when all claims are reported at the same time leading to expectations for the future payments of zero or equal to the aggregated amount of the ultimate paid claims. For this latter case, the Chain-Ladder is not recommended.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A stochastic nonlinear partial differential equation is constructed for two different models exhibiting self-organized criticality: the Bak-Tang-Wiesenfeld (BTW) sandpile model [Phys. Rev. Lett. 59, 381 (1987); Phys. Rev. A 38, 364 (1988)] and the Zhang model [Phys. Rev. Lett. 63, 470 (1989)]. The dynamic renormalization group (DRG) enables one to compute the critical exponents. However, the nontrivial stable fixed point of the DRG transformation is unreachable for the original parameters of the models. We introduce an alternative regularization of the step function involved in the threshold condition, which breaks the symmetry of the BTW model. Although the symmetry properties of the two models are different, it is shown that they both belong to the same universality class. In this case the DRG procedure leads to a symmetric behavior for both models, restoring the broken symmetry, and makes accessible the nontrivial fixed point. This technique could also be applied to other problems with threshold dynamics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose a method to analytically show the possibility for the appearance of a maximum in the signal-to-noise ratio in nonpotential systems. We apply our results to the FitzHugh-Nagumo model under a periodic external forcing, showing that the model exhibits stochastic resonance. The procedure that we follow is based on the reduction to a one-dimensional dynamics in the adiabatic limit and in the topology of the phase space of the systems under study. Its application to other nonpotential systems is also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is now well accepted that cellular responses to materials in a biological medium reflect greatly the adsorbed biomolecular layer, rather than the material itself. Here, we study by molecular dynamics simulations the competitive protein adsorption on a surface (Vroman effect), i.e. the non-monotonic behavior of the amount of protein adsorbed on a surface in contact with plasma as functions of contact time and plasma concentration. We find a complex behavior, with regimes during which small and large proteins are not necessarily competing between them, but are both competing with others in solution ("cooperative" adsorption). We show how the Vroman effect can be understood, controlled and inverted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A precise and simple computational model to generate well-behaved two-dimensional turbulent flows is presented. The whole approach rests on the use of stochastic differential equations and is general enough to reproduce a variety of energy spectra and spatiotemporal correlation functions. Analytical expressions for both the continuous and the discrete versions, together with simulation algorithms, are derived. Results for two relevant spectra, covering distinct ranges of wave numbers, are given.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present an analytic and numerical study of the effects of external fluctuations in active media. Our analytical methodology transforms the initial stochastic partial differential equations into an effective set of deterministic reaction-diffusion equations. As a result we are able to explain and make quantitative predictions on the systematic and constructive effects of the noise, for example, target patterns created out of noise and traveling or spiral waves sustained by noise. Our study includes the case of realistic noises with temporal and spatial structures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study front propagation in stirred media using a simplified modelization of the turbulent flow. Computer simulations reveal the existence of the two limiting propagation modes observed in recent experiments with liquid phase isothermal reactions. These two modes respectively correspond to a wrinkled although sharp propagating interface and to a broadened one. Specific laws relative to the enhancement of the front velocity in each regime are confirmed by our simulations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The propagation of a pulse in a nonlinear array of oscillators is influenced by the nature of the array and by its coupling to a thermal environment. For example, in some arrays a pulse can be speeded up while in others a pulse can be slowed down by raising the temperature. We begin by showing that an energy pulse (one dimension) or energy front (two dimensions) travels more rapidly and remains more localized over greater distances in an isolated array (microcanonical) of hard springs than in a harmonic array or in a soft-springed array. Increasing the pulse amplitude causes it to speed up in a hard chain, leaves the pulse speed unchanged in a harmonic system, and slows down the pulse in a soft chain. Connection of each site to a thermal environment (canonical) affects these results very differently in each type of array. In a hard chain the dissipative forces slow down the pulse while raising the temperature speeds it up. In a soft chain the opposite occurs: the dissipative forces actually speed up the pulse, while raising the temperature slows it down. In a harmonic chain neither dissipation nor temperature changes affect the pulse speed. These and other results are explained on the basis of the frequency vs energy relations in the various arrays