954 resultados para Non-invasive ventilation
Resumo:
Modelo para o estudo de diversas doenças humanas, o hamster tem sido objeto de numerosos estudos comportamentais e envolvendo estresse e/ou comportamento agonístico que supõem, muitas vezes, o monitoramento das flutuações hormonais nos indivíduos envolvidos. O objetivo do presente trabalho foi confirmar a adequação de um conjunto comercial para dosagem de testosterona em sangue humano para a quantificação de metabólitos fecais de testosterona (MFT) em hamsters Sírios machos e fêmeas. Dez machos foram submetidos a um desafio com um agonista de GnRH para estimular a atividade testicular, elevando os níveis circulantes de testosterona. Cinco fêmeas receberam uma injeção de testosterona enquanto cinco outras receberam uma injeção de solução salina. Amostras de fezes coletadas antes e depois dos procedimentos, assim como amostras fecais de 20 fêmeas gestantes coletadas ao longo da gestação foram analisadas com um conjunto comercial para radioimunoensaio. Um pico de MFT 12h após a injeção seguido de uma queda abaixo do nível basal comprovou que, nos machos, as alterações nos níveis de MFT refletem as alterações da concentração de testosterona no sangue. Nestes observou-se um ciclo circadiano das concentrações de MFT com acrofase no início do período claro correspondendo ao ciclo descrito para as concentrações sanguíneas na literatura. Nas fêmeas a administração de testosterona exógena provocou uma elevação importante dos níveis de MFT, mas as concentrações medidas ao longo da gestação não refletiram o padrão dos níveis sanguíneos do hormônio endógeno. O conjunto para radioimunoensaio para testosterona em sangue humano mostrou-se adequado para o monitoramento da função testicular no hamster macho, mas um ensaio mais específico seria necessário para as fêmeas.
Resumo:
Background: The possibility of using stem cells for regenerative medicine has opened a new field of investigation. The search for sources to obtain multipotent stem cells from discarded tissues or through non-invasive procedures is of great interest. It has been shown that mesenchymal stem cells (MSCs) obtained from umbilical cords, dental pulp and adipose tissue, which are all biological discards, are able to differentiate into muscle, fat, bone and cartilage cell lineages. The aim of this study was to isolate, expand, characterize and assess the differentiation potential of MSCs from human fallopian tubes (hFTs). Methods: Lineages of hFTs were expanded, had their karyotype analyzed, were characterized by flow cytometry and underwent in vitro adipogenic, chondrogenic, osteogenic, and myogenic differentiation. Results: Here we show for the first time that hFTs, which are discarded after some gynecological procedures, are a rich additional source of MSCs, which we designated as human tube MSCs (htMSCs). Conclusion: Human tube MSCs can be easily isolated, expanded in vitro, present a mesenchymal profile and are able to differentiate into muscle, fat, cartilage and bone in vitro.
Resumo:
Blood pressure (BP) assessment during resistance exercise can be useful to avoid high BP, reducing cardiovascular risk, especially in hypertensive individuals. However, non-invasive accurate technique for this purpose is not available. The aim of this study was to compare finger photoplethysmographic (FPP) and intra-arterial BP values and responses during resistance exercise. Eight non-medicated hypertensive subjects (5 males, 30-60 years) were evaluated during pre-exercise resting period and during three sets of the knee extension exercise performed at 80% of 1RM until fatigue. BP was measured simultaneously by FPP and intra-arterial methods. Data are mean +/- SD. Systolic BP was significantly higher with FPP than with intra-arterial: at pre-exercise (157 +/- 13 vs. 152 +/- 10 mmHg; p < 0.01) and the mean (202 +/- 29 vs. 198 +/- 26 mmHg; p < 0.01), and the maximal (240 +/- 26 vs. 234 +/- 16 mmHg; p < 0.05) values achieved during exercise. The increase in systolic BP during resistance exercise was similar between FPP and intra-arterial (+ 73 +/- 29 vs. + 71 +/- 18 mmHg; p = 0.59). Diastolic BP values and increases were lower with FPP. In conclusion, FPP provides similar values of BP increment during resistance exercise than intra-arterial method. However, it overestimates by 2.6 +/- 6.1% the maximal systolic BP achieved during this mode of exercise and underestimates by 8.8 +/- 5.8% the maximal diastolic BP.
Resumo:
Oropharyngeal dysphagia is characterized by any alteration in swallowing dynamics which may lead to malnutrition and aspiration pneumonia. Early diagnosis is crucial for the prognosis of patients with dysphagia, and the best method for swallowing dynamics assessment is swallowing videofluoroscopy, an exam performed with X-rays. Because it exposes patients to radiation, videofluoroscopy should not be performed frequently nor should it be prolonged. This study presents a non-invasive method for the pre-diagnosis of dysphagia based on the analysis of the swallowing acoustics, where the discrete wavelet transform plays an important role to increase sensitivity and specificity in the identification of dysphagic patients. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Background/purpose The continuous advancement in cosmetic science has led to an increasing demand for the development of non-invasive, reliable scientific techniques directed toward claim substantiation, which is of utmost relevance, to obtain data regarding the efficacy and safety of cosmetic products. Methods In this work, we used the optical coherence tomography (OCT) technique to produce in vitro transversal section-images of human hair. We also compared the OCT signal before and after chemical treatment with an 18% w/w ammonium thioglycolate solution. Results The mean diameter of the medulla was 29 +/- 7 mu m and the hair diameter was 122 +/- 16 mu m in our samples of standard Afro-ethnic hair. A three-dimensional (3D) image was constructed starting from 601 cross-sectional images (slices). Each slice was taken in steps of 6.0 mu m at eight frames per second, and the entire 3D image was constructed in 60 s. Conclusion It was possible to identify, using the A-scan protocol, the principal structures: the cuticle, cortex and medulla. After chemical treatment, it was not possible to identify the main structures of hair fiber due to index matching promoted by deleterious action of the chemical agent.
Resumo:
The skin is a large and accessible area of the body, offering the possibility to be used as an alternative route for drug delivery. In the last few years strong progress has been made on the developing of nanoparticulate systems for specific applications. The interaction of such small particles with human skin and their possible penetration attracted some interest from toxicological as well as from drug delivery perspectives. As size is assumed to play a key role, the aim of the present work was to investigate the penetration profile of very small model particles (similar to 4 nm) into excised human skin under conditions chosen to mimic the in vivo situation. Possible application procedures such as massaging the formulation (5 to 10 minutes) were analyzed by non-invasive multiphoton- and confocal laser scanning microscopy (MPM, CLSM). Furthermore, the application on damaged skin was taken into account by deliberately removing parts of the stratum corneum. Although it was clearly observed that the mechanical actions affected the distribution pattern of the QDs on the skin surface, there was no evidence of penetration into the skin in all cases tested. QDs could be found in deeper layers only after massaging of damaged skin for 10 min. Taking these data into account, obtained on the gold standard human skin, the potential applications of nanoparticulate systems to act as carrier delivering drugs into intact skin might be limited and are only of interest for partly damaged skin.
Resumo:
Introduction: Whole blood is used for diagnosis of lead exposure. A non-invasive method to obtain samples for the biomonitoring of lead contamination has become a necessity. This study 1) compares the lead content in whole saliva samples (Pb-saliva) of children from a city with no reported lead contamination (Ribeirao Preto, Sao Paulo State, Brazil) and children of a region notoriously contaminated with lead (Bauru, Sao Paulo State, Brazil), and 2) correlates Pb-saliva with the lead content in the enamel microbiopsy samples (Pb-enamel) in the case of these two populations. Methods: From a population of our previous study that had included 247 children (4- to 6-year-old) from Ribeirao Preto, and 26 children from Bauru, Pb-saliva was analyzed in 125 children from Ribeirdo Preto and 19 children from Bauru by inductively coupled plasma mass spectrometry (ICPMS). To correlate Pb-saliva with Pb-enamel, we used Pb-enamel data obtained in our previous study. The Mann-Whitney test was employed to compare the Pb-saliva data of the two cities. Pb-saliva and Pb-enamel values were then Log(10) transformed to normalize data, and Pb-saliva and Pb-enamel were correlated using Pearson`s correlation coefficient. Results: Median Pb-saliva from the Ribeirao Preto population (1.64 mu g/L) and the Bauru population (5.85 mu g/L) were statistically different (p<0.0001). Pearson`s correlation coefficient for Log(10) Pb-saliva versus Log(10) Pb-enamel was 0.15 (p=0.08) for Ribeirao Preto and 0.38 (p=0.11) for Bauru. Conclusions: A clear relationship between Pb-saliva and environmental contamination by lead is shown. Further studies on Pb-saliva should be undertaken to elucidate the usefulness of saliva as a biomarker of lead exposure, particularly in children. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Multifrequency bioimpedance analysis has the potential to provide a non-invasive technique for determining body composition in live cattle. A bioimpedance meter developed for use in clinical medicine was adapted and evaluated in 2 experiments using a total of 31 cattle. Prediction equations were obtained for total body water, extracellular body water, intracellular body water, carcass water and carcass protein. There were strong correlations between the results obtained through chemical markers and bioimpedance analysis when determined in cattle that had a wide range of liveweights and conditions. The r(2) values obtained were 0.87 and 0.91 for total body water and extracellular body water respectively. Bioimpedance also correlated with carcass water, measured by chemical analysis (r(2) = 0.72), but less well with carcass protein (r(2) = 0.46). These correlations were improved by inclusion of liveweight and sex as variables in multiple regression analysis. However, the resultant equations were poor predictors of protein and water content in the carcasses of a group of small underfed beef cattle, that had a narrow range of liveweights. In this case, although there was no statistical difference between the predicted and measured values overall, bioimpedance analysis did not detect the differences in carcass protein between the 2 groups that were apparent following chemical analysis. Further work is required to determine the sensitivity of the technique in small underfed cattle, and its potential use in heavier well fed cattle close to slaughter weight.
Resumo:
Traditional field sampling approaches for ecological studies of restored habitat can only cover small areas in detail, con be time consuming, and are often invasive and destructive. Spatially extensive and non-invasive remotely sensed data can make field sampling more focused and efficient. The objective of this work was to investigate the feasibility and accuracy of hand-held and airborne remotely sensed data to estimate vegetation structural parameters for an indicator plant species in a restored wetland. High spatial resolution, digital, multispectral camera images were captured from an aircraft over Sweetwater Marsh (San Diego County, California) during each growing season between 1992-1996. Field data were collected concurrently, which included plant heights, proportional ground cover and canopy architecture type, and spectral radiometer measurements. Spartina foliosa (Pacific cordgrass) is the indicator species for the restoration monitoring. A conceptual model summarizing the controls on the spectral reflectance properties of Pacific cordgrass was established. Empirical models were developed relating the stem length, density, and canopy architecture of cordgrass to normalized-difference-vegetation-index values. The most promising results were obtained from empirical estimates of total ground cover using image data that had been stratified into high, middle, and low marsh zones. As part of on-going restoration monitoring activities, this model is being used to provide maps of estimated vegetation cover.
Resumo:
Plant performance is, at least partly, linked to the location of roots with respect to soil structure features and the micro-environment surrounding roots. Measurements of root distributions from intact samples, using optical microscopy and field tracings have been partially successful but are imprecise and labour-intensive. Theoretically, X-ray computed micro-tomography represents an ideal solution for non-invasive imaging of plant roots and soil structure. However, before it becomes fast enough and affordable or easily accessible, there is still a need for a diagnostic tool to investigate root/soil interplay. Here, a method for detection of undisturbed plant roots and their immediate physical environment is presented. X-ray absorption and phase contrast imaging are combined to produce projection images of soil sections from which root distributions and soil structure can be analyzed. The clarity of roots on the X-ray film is sufficient to allow manual tracing on an acetate sheet fixed over the film. In its current version, the method suffers limitations mainly related to (i) the degree of subjectivity associated with manual tracing and (ii) the difficulty of separating live and dead roots. The method represents a simple and relatively inexpensive way to detect and quantify roots from intact samples and has scope for further improvements. In this paper, the main steps of the method, sampling, image acquisition and image processing are documented. The potential use of the method in an agronomic perspective is illustrated using surface and sub-surface soil samples from a controlled wheat trial. Quantitative characterization of root attributes, e.g. radius, length density, branching intensity and the complex interplay between roots and soil structure, is presented and discussed.
Resumo:
Some patients are no longer able to communicate effectively or even interact with the outside world in ways that most of us take for granted. In the most severe cases, tetraplegic or post-stroke patients are literally `locked in` their bodies, unable to exert any motor control after, for example, a spinal cord injury or a brainstem stroke, requiring alternative methods of communication and control. But we suggest that, in the near future, their brains may offer them a way out. Non-invasive electroencephalogram (EEG)-based brain-computer interfaces (BCD can be characterized by the technique used to measure brain activity and by the way that different brain signals are translated into commands that control an effector (e.g., controlling a computer cursor for word processing and accessing the internet). This review focuses on the basic concepts of EEG-based BC!, the main advances in communication, motor control restoration and the down-regulation of cortical activity, and the mirror neuron system (MNS) in the context of BCI. The latter appears to be relevant for clinical applications in the coming years, particularly for severely limited patients. Hypothetically, MNS could provide a robust way to map neural activity to behavior, representing the high-level information about goals and intentions of these patients. Non-invasive EEG-based BCIs allow brain-derived communication in patients with amyotrophic lateral sclerosis and motor control restoration in patients after spinal cord injury and stroke. Epilepsy and attention deficit and hyperactive disorder patients were able to down-regulate their cortical activity. Given the rapid progression of EEG-based BCI research over the last few years and the swift ascent of computer processing speeds and signal analysis techniques, we suggest that emerging ideas (e.g., MNS in the context of BC!) related to clinical neuro-rehabilitation of severely limited patients will generate viable clinical applications in the near future.
Resumo:
Motor cortex stimulation oriented by functional cortical mapping is used mainly for treating otherwise intractable neurological disorders, however. its mechanism of action remains elusive. Herein, we present a new method for functional mapping of the rat motor cortex using non-invasive transdural electrical stimulation. This method allows a non-invasive mapping of the surface of the neocortex providing a differentiation of representative motor areas. This Study may facilitate further investigation about the mechanisms mediating the effects of electrical stimulation, possibly benefiting patients who do not respond to this neuromodulation therapy. (c) 2009 Elsevier B.V. All rights reserved.
Coronary CT angiography using 64 detector rows: methods and design of the multi-centre trial CORE-64
Resumo:
Multislice computed tomography (MSCT) for the noninvasive detection of coronary artery stenoses is a promising candidate for widespread clinical application because of its non-invasive nature and high sensitivity and negative predictive value as found in several previous studies using 16 to 64 simultaneous detector rows. A multi-centre study of CT coronary angiography using 16 simultaneous detector rows has shown that 16-slice CT is limited by a high number of nondiagnostic cases and a high false-positive rate. A recent meta-analysis indicated a significant interaction between the size of the study sample and the diagnostic odds ratios suggestive of small study bias, highlighting the importance of evaluating MSCT using 64 simultaneous detector rows in a multi-centre approach with a larger sample size. In this manuscript we detail the objectives and methods of the prospective ""CORE-64"" trial (""Coronary Evaluation Using Multidetector Spiral Computed Tomography Angiography using 64 Detectors""). This multi-centre trial was unique in that it assessed the diagnostic performance of 64-slice CT coronary angiography in nine centres worldwide in comparison to conventional coronary angiography. In conclusion, the multi-centre, multi-institutional and multi-continental trial CORE-64 has great potential to ultimately assess the per-patient diagnostic performance of coronary CT angiography using 64 simultaneous detector rows.
Resumo:
Introduction: Lower urinary tract symptoms ( LUTS) are common in men over 50 years of age due to prostate enlargement. Diabetes mellitus is also more prevalent in this group. LUTS may result from bladder outlet obstruction ( BOO) secondary to prostate enlargement or bladder dysfunction secondary to diabetes or even from a combination of both. Objectives: The objective of this study was to determine the prevalence of BOO and other urodynamic abnormalities in diabetic patients with LUTS and enlarged prostate. A secondary objective was to assess the predictive value of non-invasive tests for BOO diagnosis in this group of patients. Patients and Methods: 50 consecutive diabetic patients with enlarged prostate and LUTS were evaluated by the International Prostate Symptom Score ( IPSS), ultra sonography and urodynamics. BOO diagnosis was based on pressure/ flow measurements according to the International Continence Society`s standards. Results: Of the 50 patients in the study, 23 ( 46%) had BOO. There was no correlation between the IPSS, uroflowmetry, post- voiding residual urine or prostate volume and the presence of BOO ( p > 0.05). Conclusions: There is a relatively low prevalence of BOO in diabetic patients with prostate enlargement and LUTS. Non- invasive tests did not allow the identification of these subjects. Only urodynamic evaluation is able to determine symptom etiology. Copyright (c) 2008 S. Karger AG, Basel.
Resumo:
OBJECTIVE To evaluate the correlation between ultrasound-estimated bladder weight (UEBW) in patients with different degrees of bladder outlet obstruction (BOO). METHODS We evaluated 50 consecutive non-neurogenic male patients with lower urinary tract symptoms (LUTS) referred to urodynamic study (UDS). All patients self-answered the International Prostate Score Symptoms (IPSS) questionnaire. After the UDS, the bladder was filled with 150 mL to determine UEBW. Patients with a bladder capacity under 150 mL, a previous history of prostate surgery or pelvic irradiation, an IPSS score <8, a bladder stone or urinary tract infection were excluded. After a pressure-flow study, the Schafer linear passive urethral resistance relation nomogram was plotted to determine the grade of obstruction: Grades I-II/VI were defined as mild obstruction, Grades III-IV/VI as moderate obstruction, and Grades V-VI/VI as severe obstruction. RESULTS The UEBW was 51.7 +/- 26.9, 54.1 +/- 30.0 and 54.8 +/- 28.2 in patients with mild, moderate and severe BOO, respectively (P = 0.130). The UEBW allowed us to define four groups: (i) UEBW < 35 g; (ii) 35 g <= UEBW < 50 g; (iii) 50 g <= UEBW < 70 g; and (4) UEBW >= 70 g. We did not find any differences in age, prostate weight, IPSS, PVR, cystometric bladder capacity, presence of detrusor overactive and degree of obstruction in the aforementioned groups. CONCLUSION Despite the fact that some studies have emphasized the value of UEBW as an efficient non-invasive method for evaluating lower urinary tract obstruction, our study suggests that UEBW does not present any individual correlation with LUTS or objective measurements of BOO.