940 resultados para Neonatal immune response


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Protein arginine methyltransferase 1 (PRMT1) is currently thought as an effector to regulate interferon (IFN) signalling. Here Paralichthys olivaceus PRMT1 (PoPRMT1) gene was identified as a vitally induced gene from UV-inactivated Scophthalmus maximus Rhabdovirus (SMRV)-infected flounder embryonic cells (FEC). PoPMRT1 encodes a 341-amino-acid protein that shares the conserved domains including post-I, motif I, II and III. Homology comparisons show that the putative PoPMRT1 protein is the closest to zebrafish PMRT1 and belongs to type I PRMT family (including PRMT1, PRMT2, PRMT3, PRMT4, PRMT6, PRMT8). Expression analyses revealed an extensive distribution of PoPMRT1 in all tested tissues of flounder. In vitro induction of PoPRMT1 was determined in UV-inactivated SMRV-infected FEC cells, and under the same conditions, flounder Mx wash also transcriptionally up-regulated, indicating that an IFN response might be triggered. Additionally, live SMRV infection of flounders induced an increased expression of PoPRMT1 mRNA and protein significantly in spleen, and to a lesser extent in head kidney and intestine. Immunofluorescence analysis revealed a major cyptoplasmic distribution of PoPRMT1 in normal FEC but an obvious increase occurred in nucleus in response to UV-inactivated SMRV. This is the first report on in vitro and in vivo expression of fish PRMT1 by virus infection, suggesting that PoPRMT1 might be implicated in flounder antiviral immune response. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The humoral immune responses of grouper Epinephelus akaara to a natural infection with Glugea epinephelusis was studied by ELISA utilizing intact mature spores as the coated antigen. Results showed that a specific humoral immune response was elicited, but the intensity of infection (in terms of the number of cysts) was not related to the antibody level in naturally infected hosts. The differences in the antigenicity of intact mature spores and soluble spore proteins derived from cracked mature spores were also analyzed. Results suggested that similar antigen epitopes existed between the 2 groups. Additionally, antigen component patterns and the distribution of antigen with immunogenicity were investigated by using the western blot and the immunofluorescent antibody technique (IFAT). The new parasitic microsporidium has specific polypeptide patterns comparable to the reported fish microsporidians. The main antigenic substances are concentrated on the surface of spores, and are mostly located on the anterior and posterior end of the spore bodies. Most surface components of the G. epinephelusis spores are soluble, The potential role of the surface components in initiating infection was also discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Many B cell epitopes within p24 of human immunodeficiency virus type 1 (HIV-1) were identified, while most of them were determined by using murine monoclonal antibodies reacting with overlapping peptides of p24. Therefore these epitopes may not represent the actual epitopes recognized by the HIV-1 infected individuals. In the present study, immune responses of 67 HIV-1 positive sera from Yunnan Province, China to five peptides on p24 of HIV-1 and one of HIV-2 were analyzed. All of 67 sera did not recognize peptide GA-12 on HIV-1 and peptide AG-23 on HIV-2, which indicated that GA-12 was not human B cell epitope and AG-23 did not cross-react with HIV-1 positive serum. Except 13 sera (19.4%), all remaining sera did not recognize peptides NI-15, DR-16, DC-22 and PS-18, which indicated that these four peptides represented B cell linear epitopes of HIV-1 p24 in some HIV-1 infected individuals but not the immuno-dominant epitopes in most individuals. Cellular & Molecular Immunology. 2005;2(4):289-293.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

CpG oligodeoxynucleotides (ODNs) can stimulate the immune system, and therefore are widely used as a therapeutic vaccination and immune adjuvant in human. In the present study, CpG-C, a combination of A- and B-class ODN, was injected into Chinese mitten crab Eriocheir sinensis at three doses (0.1, 1 and 10 mu g crab-1), and the reactive oxygen species (ROS) levels, activities of total intracellular phenoloxidase (PO) and lysozyme-like activities, the mRNA transcripts of EsproPO, EsCrustin and EsALF were assayed to evaluate its modulating effects on the immune system of crab. The ROS levels in all treated and control groups were significantly increased from 6 to 24 h, except that ROS in 0.1 mu g CpG-C-treated crabs was comparable to that of the blank at 6 h. The PO activity was significantly enhanced and EsproPO transcripts were down-regulated (P < 0.01) at 6 h after the injection of 0.1 mu g CpG-C, with no significant changes in the other dosage treatments. The lysozyme-like activities and EsCrustin transcripts in the CpG-C-treatment groups were significantly higher than those of controls. The mRNA expression of EsALF remained almost constant in all the groups during the treatment. These results collectively suggested that CpG-C could activate the immune responses of E. sinensis, and might be used as a novel immunostimulant for disease control in crabs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Double-stranded RNA (dsRNA) is a virus-associated molecular pattern which induces antiviral innate immune responses and RNA interference (RNAi) in mammals. In invertebrates, RNAi phenomenon has been widely studied, but dsRNA-induced innate immune response is seldom reported. In the present study, two different dsRNAs specific for green fluorescent protein (GFP) and the putative D1 protein of photosystem II (NoPSD) from Nannochloropsis oculata, were employed to challenge Chinese mitten crab Eriocheir sinensis. The temporal changes of phenoloxidase (PO), acid phosphatase (ACP), superoxide dismutase (SOD) and malondialdehyde (MDA) content, as well as the mRNA expression of some immune-related genes were examined in order to estimate the effect of dsRNAs on the innate immunity of E. sinensis. The activities of PO, ACP and SOD significantly increased after dsRNA treatment, whereas malondialdehyde (MDA) content did not change significantly. Among the examined genes, only the mRNA expression of EsALF, an antibacterial peptide in E. sinensis, was significantly up-regulated (about 5 fold, P < 0.05) at 12 h after dsRNA treatment, while no significant expression changes were observed among the other immune genes. The increase of PO, ACP and SOD activities, and mRNA expression level of EsALF after dsRNA stimulation indicate that phenoloxidase, hydrolytic enzyme, antioxidation and EsALF were involved in dsRNA-induced innate immunity, suggesting that broad-spectrum immune responses could be induced by dsRNA in E. sinensis. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

C-type lectins are Ca2+-dependent carbohydrate-recognition proteins that play crucial roles in innate immunity. The cDNA of C-type lectin (AiCTL1) in the bay scallop Argopecten irradians was cloned by expressed sequence tag (EST) and RACE techniques. The full-length cDNA of AiCTL1 was 660 bp, consisting of a T-terminal. untranslated region (UTR) of 30 bp and a 3' UTR of 132 bp with a polyadenylation signal sequence AATAAA and a poly(A) tail. The AiCTL1 cDNA encoded a polypeptide of 166 amino acids with a putative signal peptide of 20 amino acid residues and a mature protein of 146 amino acids. The deduced amino acid sequence of AiCTL1 was highly similar to those of the C-type lectins from other animals and contained a typical carbohydrate-recognition domain (CRD) of 121 residues, which has four conserved disulfide-bonded cysteine residues that define the CRD and two additional cysteine residues at the amino terminus. AiCTL1 mRNA was dominantly expressed in the hemocytes of the bay scallop. The temporal expression of AiCTL1 mRNA in hemocytes was increased by 5.7-and 4.9-fold at 6 h after injury and 8 h after injection of bacteria, respectively. The structural features, high similarity and expression pattern of AiCTL1 indicate that the gene may be involved in injury heating and the immune response in A. irradians. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Zhikong Scallop, Chlamys farreri, is one of the most Important bivalve mollusks cultured in northern China However, mass mortality of the cultured C farreri has posed a serious threat to the maricultural Industry in recent years. Acute Viral Necrobiotic Virus (AVNV) is believed as an important etiological agent causing the scallop mass mortalities To understand the mechanism behind the AVNV associated scallop disease and mortality, we assessed the physiological and immune responses of C farreri to the virus infection using oxygen consumption rate, ammonium-nitrogen excretion rate, hemocyte copper, zinc superoxide dismutase gene expression, and plasma superoxide dismutase activity and alkaline phosphatase activity as indicators Scallops challenged by AVNV at 25 C developed typical disease signs 2 days after virus injection Before the disease manifested, scallop oxygen consumption and NH4+-N excretion rates rose and then fell back. Real-time PCR revealed that the hemocyte cytosol Cu, Zn SOD gene expression was upregulated followed by recovery The plasma SOD activity, however, augmented consistently following virus injection Moreover, plasma AKP activity first lowered and then elevated gradually to the highest level at 24 h post virus injection Scallops challenged by AVNV at 17 degrees C neither developed notable disease nor showed obvious responses that could be associated with the virus infection. While the results suggested a correlation between the elevated seawater temperature and the AVNV infection associated C farreri mortalities, they also indicated that the viral infection provoked multiple physiological and immune responses in the host scallops (C) 2010 Elsevier Ltd All rights reserved

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We examined the growth, survival and immune response of the scallop, Chlamys farreri, during a 1-year period in deep water of Haizhou Bay. Scallops were cultured using two methods: (1) in lantern nets at a 5 m depth and (2) in a bottom culture system (sleeves) on the seabed at about a 25 m depth. Shell heights, meat dry weight and immune activities in the haemolymph (superoxide dismutase and myeloperoxidase) were measured bimonthly or quarterly from July 2007 to June 2008. Survival was measured at the end of the study and environmental parameters in the experimental layers were monitored during the experiment. The growth and immune activities of scallops were lower when the water temperature was high, which was consistent with the main mortality occurring in summer. The growth and immunity of scallops were higher in the suspended culture than in the bottom culture during the experiment, with the exception of shell growth during the last study period. Survival of scallops in the suspended culture (54.6 +/- 12.3%) was significantly lower than that in the bottom culture (86.8 +/- 3.5%) at the end of this study. We conclude from our results that the high mortality of C. farreri can be prevented by culturing them in a bottom culture system before November of the first year, and then transferring them to a suspended culture to improve scallop production.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Survival, growth and immune response of the scallop, Chlamys farreri, cultured in lantern nets at five different depths (2, 5, 10, 15, and 20 m below the sea surface) were studied in Haizhou Bay during the hot season (summer and autumn) of 2007. Survival and growth rates were quantified bimonthly. Immune activities in hemolymph (superoxide dismutase (SOD) and acid phosphatase (ACP)) were measured to evaluate the health of scallops at the end of the study. Environmental parameters at the five depths were also monitored during the experiment. Mortalities mainly occurred during summer. Survival of scallops suspended at 15 m (78.0%) and 20 m (86.7%) was significantly higher than at 2 m (62.9%), 5 m (60.8%) or 10 m (66.8%) at the end of the study. Mean shell height grew significantly faster at 10 m (205.0 mu m/d) and 20 m (236.9 mu m/d) than at 2, 5 or 15 m in summer (July 9 to September 1); however, shell growth rate at 20 m was significantly lower than at the other four depths in autumn (September 2 to November 6). In contrast to summer, scallops at 5 m grew faster (262.9 mu m/d) during autumn. The growth of soft tissue at different depths showed a similar trend to the shell. Growth rates of shell height and soft tissue were faster in autumn than in summer, with the exception of shell height at 20 m. SOD activity of scallops increased with depth, and ACP activity was significantly higher at 15 and 20 m than at other depths, which suggests that scallops were healthier near the bottom. Factors explaining the depth-related mortality and growth of scallops are also discussed. We conclude that the mass mortality of scallop, C. farreri, during summer can be prevented by moving the culture area to deeper water and yield can be maximized by suspending the scallops in deep water during summer and then transferring them to shallow water in autumn.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Davison, G. and Gleeson, M. (2005). Influence of Acute Vitamin C and/or Carbohydrate Ingestion on Hormonal, Cytokine, and Immune Responses to Prolonged Exercise. International Journal of Sport Nutrition and Exercise Metabolism. 15(5), pp.465-479 RAE2008

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cancer represents a leading of cause of death in the developed world, inflicting tremendous suffering and plundering billions from health budgets. The traditional treatment approaches of surgery, radiotherapy and chemotherapy have achieved little in terms of cure for this deadly disease. Instead, life is prolonged for many, with dubious quality of life, only for disease to reappear with the inevitable fatal outcome. “Blue sky” thinking is required to tackle this disease and improve outcomes. The realisation and acceptance of the intrinsic role of the immune system in cancer pathogenesis, pathophysiology and treatment represented such a “blue sky” thought. Moreover, the embracement of immunotherapy, the concept of targeting immune cells rather than the tumour cells themselves, represents a paradigm shift in the approach to cancer therapy. The harnessing of immunotherapy demands radical and innovative therapeutic endeavours – endeavours such as gene and cell therapies and RNA interference, which two decades ago existed as mere concepts. This thesis straddles the frontiers of fundamental tumour immunobiology and novel therapeutic discovery, design and delivery. The work undertaken focused on two distinct immune cell populations known to undermine the immune response to cancer – suppressive T cells and macrophages. Novel RNAi mediators were designed, validated and incorporated into clinically relevant gene therapy vectors – involving a traditional lentiviral vector approach, and a novel bacterial vector strategy. Chapter 2 deals with the design of novel RNAi mediators against FOXP3 – a crucial regulator of the immunosuppressive regulatory T cell population. Two mediators were tested and validated. The superior mediator was taken forward as part of work in chapter 3. Chapter 3 deals with transposing the RNA sequence from chapter 2 into a DNA-based construct and subsequent incorporation into a lentiviral-based vector system. The lentiviral vector was shown to mediate gene delivery in vitro and functional RNAi was achieved against FOXP3. Proof of gene delivery was further confirmed in vivo in tumour-bearing animals. Chapter 4 focuses on a different immune cell population – tumour-associated macrophages. Non-invasive bacteria were explored as a specific means of delivering gene therapy to this phagocytic cell type. Proof of delivery was shown in vitro and in vivo. Moreover, in vivo delivery of a gene by this method achieved the desired immune response in terms of cytokine profile. Overall, the data presented here advance exploration within the field of cancer immunotherapy, introduce novel delivery and therapeutic strategies, and demonstrate pre-clinically the potential for such novel anti-cancer therapies.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background and Aim: During carcinogenesis, tumours develop multiple mechanisms to evade the immune system and suppress the anti-tumour immune response. Upregulation of Fas Ligand (FasL/CD95L) expression may represent one such mechanism. FasL is a member of the tumour necrosis factor superfamily that triggers apoptotic cell death following ligation to its receptor Fas. Numerous studies have demonstrated upregulated FasL expression in tumor cells, with FasL expression associated with numerous pro-tumorigenic effects. However, little is known about the mechanisms that regulate FasL expression in tumours. The cyclooxgenase (COX) signalling pathway may play an important role in colon carcinogenesis, via the production of prostaglandins, in particular PGE2. PGE2 signals through four different receptor subtypes, EP1 – EP4. Thus, the aim of this study was to investigate the effect of targeting the PGE2-FasL signaling pathway. Results: (i) PGE2 induces FasL expression via the EP1 receptor in colon cancer cells. (ii) Suppression of FasL expression in colon tumour cells in vivo significantly delays and reduces tumour growth. (iii) Blocking EP1 receptor signaling, or suppression of the EP1 receptor in colon tumour cells, reduces tumour growth in vivo. Suppression of tumour growth correlates in part with suppression of FasL expression. (iv) The reduction in tumour growth is associated with an improved anti-tumour immune response. Tumour infiltration by Treg cells and macrophages was reduced, and the cytotoxic activity of CTL generated from splenocytes isolated from these mice increased. Conclusion: 1) Targeting FasL expression by blocking PGE2-EP1 receptor signalling reduces tumour development in vivo. 2) The mechanism is indirect but is associated with an increased anti-tumour immune response. Thus, unraveling the mechanisms regulating FasL expression and the pro-tumorigenic effects of the EP1 receptor may aid in the search for new therapeutic targets against colon cancer.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Gastro-Intestinal (GI) tract is a unique region in the body. Our innate immune system retains a fine homeostatic balance between avoiding inappropriate inflammatory responses against the myriad commensal microbes residing in the gut while also remaining active enough to prevent invasive pathogenic attack. The intestinal epithelium represents the frontline of this interface. It has long been known to act as a physical barrier preventing the lumenal bacteria of the gastro-intestinal tract from activating an inflammatory immune response in the immune cells of the underlying mucosa. However, in recent years, an appreciation has grown surrounding the role played by the intestinal epithelium in regulating innate immune responses, both in the prevention of infection and in maintaining a homeostatic environment through modulation of innate immune signalling systems. The aim of this thesis was to identify novel innate immune mechanisms regulating inflammation in the GI tract. To achieve this aim, we chose several aspects of regulatory mechanisms utilised in this region by the innate immune system. We identified several commensal strains of bacteria expressing proteins containing signalling domains used by Pattern Recognition Receptors (PRRs) of the innate immune system. Three such bacterial proteins were studied for their potentially subversive roles in host innate immune signalling as a means of regulating homeostasis in the GI tract. We also examined differential responses to PRR activation depending on their sub-cellular localisation. This was investigated based on reports that apical Toll-Like Receptor (TLR) 9 activation resulted in abrogation of inflammatory responses mediated by other TLRs in Intestinal Epithelial Cells (IECs) such as basolateral TLR4 activation. Using the well-studied invasive intra-cellular pathogen Listeria monocytogenes as a model for infection, we also used a PRR siRNA library screening technique to identify novel PRRs used by IECs in both inhibition and activation of inflammatory responses. Many of the PRRs identified in this screen were previously believed not to be expressed in IECs. Furthermore, the same study has led to the identification of the previously uncharacterised TLR10 as a functional inflammatory receptor of IECs. Further analysis revealed a similar role in macrophages where it was shown to respond to intracellular and motile pathogens such as Gram-positive L.monocytogenes and Gram negative Salmonella typhimurium. TLR10 expression in IECs was predominantly intracellular. This is likely in order to avoid inappropriate inflammatory activation through the recognition of commensal microbial antigens on the apical cell surface of IECs. Moreover, these results have revealed a more complex network of innate immune signalling mechanisms involved in both activating and inhibiting inflammatory responses in IECs than was previously believed. This contribution to our understanding of innate immune regulation in this region has several direct and indirect benefits. The identification of several novel PRRs involved in activating and inhibiting inflammation in the GI tract may be used as novel therapeutic targets in the treatment of disease; both for inducing tolerance and reducing inflammation, or indeed, as targets for adjuvant activation in the development of oral vaccines against pathogenic attack.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background/Aim: It has been demonstrated that a number of pathologies occur as a result of dysregulation of the immune system. Whilst classically associated with apoptosis, the Fas (CD95) signalling pathway plays a role in inflammation. Studies have demonstrated that Fas activation augments TLR4-mediated MyD88-dependent cytokine production. Studies have also shown that the Fas adapter protein FADD is required for RIG-I-induced IFNβ production. As a similar signalling pathway exists between RIG-I, TLR3 and the MyD88- independent of TLR4, we hypothesised that Fas activation may modulate both TLR3- and TLR4-induced cytokine production. Results: Fas activation reduced poly I:C-induced IFNβ, IL-8, IL-10 and TNFα production whilst augmenting poly I:C-, poly A:U- and Sendai virus-induced IP-10 production. TLR3-, RIG-I- and MDA5-induced IP-10 luciferase activation were inhibited by the Fas adapter protein FADD using overexpression studies. Poly I:C-induced phosphorylation of p-38 and JNK MAPK were reduced by Fas activation. Overexpression of FADD induced AP-1 luciferase activation. Point mutations in the AP-1 binding site enhanced poly I:C-induced IP- 10 production. LPS-induced IL-10, IL-12, IL-8 and TNFα production were enhanced by Fas activation, whilst reducing LPS-induced IFNβ production. Absence of FADD using FADD-/- MEFs resulted in impaired IFNβ production. Overexpression studies using FADD augmented TLR4-, MyD88- and TRIF-induced IFNβ luciferase activation. Overexpression studies also suggested that enhanced TLR4-induced IFNβ production was independent of NFκB activation. Conclusion: Viral-induced IP-10 production is augmented by Fas activation by reducing the phosphorylation of p-38 and JNK MAPKs, modulating AP-1 activation. The Fas adapterprotein FADD is required for TLR4-induced IFNβ production. Studies presented here demonstrate that the Fas signalling pathway can therefore modulate the immune response. Our data demonstrates that this modulatory effect is mediated by its adapter protein FADD, tailoring the immune response by acting as a molecular switch. This ensures the appropriate immune response is mounted, thus preventing an exacerbated immune response.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The endoplasmic reticulum stress response, also known as the unfolded protein response (UPR), has been implicated in the normal physiology of immune defense and in several disorders, including diabetes, cancer, and neurodegenerative disease. Here, we show that the apoptotic receptor CED-1 and a network of PQN/ABU proteins involved in a noncanonical UPR response are required for proper defense to pathogen infection in Caenorhabditis elegans. A full-genome microarray analysis indicates that CED-1 functions to activate the expression of pqn/abu genes. We also show that ced-1 and pqn/abu genes are required for the survival of C. elegans exposed to live Salmonella enterica, and that overexpression of pqn/abu genes confers protection against pathogen-mediated killing. The results indicate that unfolded protein response genes, regulated in a CED-1-dependent manner, are involved in the C. elegans immune response to live bacteria.