981 resultados para National Sea Grant Program (U.S.)
Resumo:
The mission of NOAA’s National Marine Sanctuary Program (NMSP) is to serve as the trustee for a system of marine protected areas, to conserve, protect, and enhance their biodiversity, ecological integrity, and cultural legacy while facilitating compatible uses. Since 1972, thirteen National Marine Sanctuaries, representing a wide variety of ocean environments, have been established, each with management goals tuned to their unique diversity. Extending from Cape Ann to Cape Cod across the mouth of Massachusetts Bay, Stellwagen Bank National Marine Sanctuary (NMS) encompasses 2,181 square kilometers of highly productive, diverse, and culturally unique Federal waters. As a result of its varied seafloor topography, oceanographic conditions, and high primary productivity, Stellwagen Bank NMS is utilized by diverse assemblages of seabirds, marine mammals, invertebrates, and fish species, as well as containing a number of maritime heritage resources. Furthermore, it is a region of cultural significance, highlighted by the recent discovery of several historic shipwrecks. Officially designated in 1992, Stellwagen Bank became the Nation’s twelfth National Marine Sanctuary in order to protect these and other unique biological, geological, oceanographic, and cultural features of the region. The Stellwagen Bank NMS is in the midst of its first management plan review since designation. The management plan review process, required by law, is designed to evaluate, enhance, and guide the development of future research efforts, education and outreach, and the management approaches used by Sanctuaries. Given the ecological and physical complexity of Stellwagen Bank NMS, burgeoning anthropogenic impacts to the region, and competing human and biological uses, the review process was challenged to assimilate and analyze the wealth of existing scientific knowledge in a framework which could enhance management decision-making. Unquestionably, the Gulf of Maine, Massachusetts Bay, and Stellwagen Bank-proper are extremely well studied systems, and in many regards, the scientific information available greatly exceeds that which is available for other Sanctuaries. However, the propensity of scientific information reinforces the need to utilize a comprehensive analytical approach to synthesize and explore linkages between disparate information on physical, biological, and chemical processes, while identifying topics needing further study. Given this requirement, a partnership was established between NOAA’s National Marine Sanctuary Program (NMSP) and the National Centers for Coastal Ocean Science (NCCOS) so as to leverage existing NOAA technical expertise to assist the Sanctuary in developing additional ecological assessment products which would benefit the management plan review process.
Resumo:
Marine mammals, such as dolphins, can serve as key indicator species in coastal areas by reflecting the effects of natural and anthropogenic stressors. As such they are often considered sentinels of environmental and ecosystem health (Bossart 2006; Wells et al. 2004; Fair and Becker 2000). The bottlenose dolphin is an apex predator and a key component of many estuarine environments in the southeastern United States (Woodward-Clyde Consultants 1994; SCDNR 2005). Health assessments of dolphins are especially critical in areas where populations are depleted, show signs of epidemic disease and/or high mortality and/or where habitat is being altered or impacted by human activities. Recent assessments of environmental conditions in the Indian River Lagoon, Florida (IRL) and the estuarine waters surrounding Charleston, South Carolina (CHS) highlight the need for studies of the health of local bottlenose dolphins. While the condition of southeastern estuaries was rated as fair in the National Coastal Condition Report (U.S. EPA 2001), it was noted that the IRL was characterized by poorer than expected benthic communities, significant sediment toxicity and increased nutrient concentrations. Similarly, portions of the CHS estuary have sediment concentrations of aliphatic aromatic hydrocarbons, select inorganic metals, and some persistent pesticides far in excess of reported bioeffect levels (Hyland et al. 1998). Long-term trends in water quality monitoring and recent scientific research suggest that waste load assimilation, non-point source runoff impacts, contaminated sediments, and toxic pollutants are key issues in the CHS estuary system. Several ‘hot spots’ with high levels of heavy metals and organic compounds have been identified (Van Dolah et al. 2004). High concentrations of anthropogenic trace metals, polychlorinated biphenyls (PCB’s) and pesticides have been found in the sediments of Charleston Harbor, as well as the Ashley and Cooper Rivers (Long et al. 1998). Two superfund sites are located within the CHS estuary and the key contaminants of concern associated with these sites are: polycyclic aromatic hydrocarbons (PAH), lead, chromium, copper, arsenic, zinc and dioxin. Concerns related to the overall health of IRL dolphins and dermatologic disease observed in many dolphins in the area (Bossart et al. 2003) initiated an investigation of potential factors which may have impacted dolphin health. From May-August 2001, 35 bottlenose dolphins died in the IRL during an unusual mortality event (MMC 2003). Many of these dolphins were diagnosed with a variety of skin lesions including proliferative ulcerative dermatitis due to protozoa and fungi, dolphin pox and a vesicular dermatopathy of unknown etiology (Bossart et al. 2003). Multiple species from fish to dolphins in the IRL system have exhibited skin lesions of various known and unknown etiologies (Kane et al. 2000; Bossart et al. 2003; Reif et al. 2006). On-going photo-identification (photo-ID) studies have documented skin diseases in IRL dolphins (Mazzoil et al. 2005). In addition, up to 70% of green sea turtles in the IRL exhibit fibropapillomas, with the highest rates of occurrence being seen in turtles from the southern IRL (Hirama 2001).
Resumo:
Mustelidae is the largest and most diverse family in the order Carnivora. The phylogenetic relationships among the subfamilies have especially long been a focus of study. Herein we are among the first to employ two new introns (4 and 7) of the nuclear P-f
Resumo:
Pheromones are chemical cues released and sensed by individuals of the same species, which are of major importance in regulating reproductive and social behaviors of mammals. Generally, they are detected by the vomeronasal system (VNS). Here, we first investigated and compared an essential genetic component of vomeronasal chemoreception, that is, TRPC2 gene, of four marine mammals varying the degree of aquatic specialization and related terrestrial species in order to provide insights into the evolution of pheromonal olfaction in the mammalian transition from land to water. Our results based on sequence characterizations and evolutionary analyses, for the first time, show the evidence for the ancestral impairment of vomeronasal pheromone signal transduction pathway in fully aquatic cetaceans, supporting a reduced or absent dependence on olfaction as a result of the complete adaptation to the marine habitat, whereas the amphibious California sea lion was found to have a putatively functional TRPC2 gene, which is still under strong selective pressures, reflecting the reliance of terrestrial environment on chemical recognition among the semiadapted marine mammals. Interestingly, our study found that, unlike that of the California sea lion, TRPC2 genes of the harbor seal and the river otter, both of which are also semiaquatic, are pseudogenes. Our data suggest that other unknown selective pressures or sensory modalities might have promoted the independent absence of a functional VNS in these two species. In this respect, the evolution of pheromonal olfaction in marine mammals appears to be more complex and confusing than has been previously thought. Our study makes a useful contribution to the current understanding of the evolution of pheromone perception of mammals in response to selective pressures from an aquatic environment.
Resumo:
Melanocortin-1 receptor (MC1R) plays a major role in pigmentation in many species. To investigate if the MC1R gene is associated with coat color in water buffalo, the coding region of MC1R gene of 216 buffalo samples was sequenced, which included 49 black river buffalo (Murrah and Nili-Ravi), 136 swamp buffalo (Dehong, Diandongnan, Dechang, Guizhou, and Xilin) with white and gray body, and 31 hybrid offspring of river buffalo Nili-Ravi (or Murrah) and swamp buffalo. Among the three variation sites found, SNP684 was synonymous, while SNP310 and SNP384 were nonsynonymous, leading to p.S104G and p.I128M changes, respectively. Only Individuals carrying homozygote E-BR/E-BR were black. The genotype and phenotype analysis of the hybrid offspring of black river buffalo and gray swamp buffalo further revealed that the river buffalo type allele E-BR or the allele carrying the amino acid p.104S was important for the full function of MC1R. The in silico functional analysis showed that the amino acid substitutions p.G104S and p.M128I had significant impact on the function of MC1R. Above results indicate that the allele E-BR or the allele carrying the amino acid p.104S was associated with the black coat color in buffalo.
Resumo:
The inherent interest on the origin of genetic novelties can be traced back to Darwin. But it was not until recently that we were allowed to investigate the fundamental process of origin of new genes by the studies on newly evolved Young genes. Two indisp
Sequencing, annotation and comparative analysis of nine BACs of giant panda (Ailuropoda melanoleuca)
Resumo:
A 10-fold BAC library for giant panda was constructed and nine BACs were selected to generate finish sequences. These BACs could be used as a validation resource for the de novo assembly accuracy of the whole genome shotgun sequencing reads of giant panda newly generated by the Illumina GA sequencing technology. Complete sanger sequencing, assembly, annotation and comparative analysis were carried out on the selected BACs of a joint length 878 kb. Homologue search and de novo prediction methods were used to annotate genes and repeats. Twelve protein coding genes were predicted, seven of which could be functionally annotated. The seven genes have an average gene size of about 41 kb, an average coding size of about 1.2 kb and an average exon number of 6 per gene. Besides, seven tRNA genes were found. About 27 percent of the BAC sequence is composed of repeats. A phylogenetic tree was constructed using neighbor-join algorithm across five species, including giant panda, human, dog, cat and mouse, which reconfirms dog as the most related species to giant panda. Our results provide detailed sequence and structure information for new genes and repeats of giant panda, which will be helpful for further studies on the giant panda.
Resumo:
The 70% EtOH extract of Polygonum cuspidatum showed inhibitory action against HIV-1-induced syncytium formation at non-cytotoxic concentrations in vitro with a 50% effective concentration (EC50) of 13.94 +/- 3.41 mu g/mL. Through bioactivity-guided fractionation, 20 phenolic compounds, including eight stilbenoids, were isolated from the roots of Polygonum cuspidatum, and their anti-HIV-1 activities were evaluated. Results showed that compounds 1, 13, 14, and 16 demonstrated fairly strong antiviral activity against HIV-1-induced cytopathic effects in C8166 lymphocytes at non-cytotoxic concentrations, with EC50 values of 4.37 +/- 1.96 mu g/mL, 19.97 +/- 5.09, 14.4 +/- 1.34 mu g/mL, and 11.29 +/- 6.26 mu g/mL and therapeutic index (TI) values of 8.12, > 10.02, > 13.89, and > 17.71, respectively. Other compounds showed either weak or no effects. Compound 6 also showed weak inhibition (153.42 +/- 19.25 mu g/mL); however, it possesses very good water solubility and showed almost no cytotoxicity (> 2000 mu g/mL), therefore achieving a fairly good TI (13.04). The activities of the two compounds (3 and 18) from Polygonum multiflorum were also assayed. The relationship between molecular structures and their bioactivities was also discussed.
Resumo:
According to Chen's theory, topological differences are perceived faster than feature differences in early visual perception. We hypothesized that topological perception is caused by the sensitivity in discriminating figures with and without "holes". An E
Resumo:
We studied the altitudinal ranging of one habituated group of black-crested gibbons (Nomascus concolor) at Dazhaizi, Mt. Wuliang, Yunnan, China, between March 2005 and April 2006. The group ranged from 1,900 to 2,680 m above sea level. Food distribution was the driving force behind the altitudinal ranging patterns of the study group. They spent 83.2% of their time ranging between 2,100 and 2,400 m, where 75.8% of important food patches occurred. They avoided using the area above 2,500 m despite a lack of human disturbance there, apparently because there were few food resources. Temperature had a limited effect on seasonal altitudinal ranging but probably explained the diel altitudinal ranging of the group, which tended to use the lower zone in the cold morning and the higher zone in the warm afternoon. Grazing goats, the main disturbance, were limited to below 2,100 m, which was defined as the high-disturbance area (HDA). Gibbons spent less time in the HDA and, when ranging there, spent more time feeding and travelling and less time resting and singing. Human activities directly influenced gibbon behaviour, might cause forest degradation and create dispersal barriers between populations. Copyright (C) 2010 S. Karger AG, Basel
Resumo:
Although prefrontal and hippocampal neurons are critical for spatial working memory, the function of glial cells in spatial working memory remains uncertain. In this study we investigated the function of glial cells in rats' working memory. The glial cell
Resumo:
To explore the potential grazing effects of mussels on Microcystis aeruginosa, a common bloom-forming phytoplankton, Unio douglasiae and Corbicula fluminea were fed with Scenedesmus obliquus, toxic and non-toxic strains of Microcystis aeruginosa as single food and as mixtures in the laboratory. When fed with single foods, U. douglasiae has similar clearance rates on the three algae populations, while C. fluminea has significantly lower clearance rate on toxic M. aeruginosa than those on the other two algae populations. When fed with mixture foods, both the mussels show significantly higher clearance rates than on single foods. The clearance rates of U. douglasiae on the different food mixtures are not significantly different, and C. fluminea has a significantly lower clearance rate on the toxic food mixtures than that on non-toxic food mixtures. Although the relative lower clearance rates of C. fluminea on toxic food, we may still deduce that both the mussels can exert grazing pressure on phytoplankton. The deduction is supported by the composition of the excretion products. The excretion products (faeces and pseudofaeces) of both mussels contained mainly S. obliquus. In both mixed-food treatments, the ratios of S. obliquus to M. aeruginosa in the excrete products are significantly higher than those in the foods. Therefore, it can be concluded that both mussels prefer M. aeruginosa to S. obliquus, and can cause grazing pressure on M. aeruginosa.
Resumo:
Submitted by 阎军 (yanj@red.semi.ac.cn) on 2010-05-07T13:34:11Z No. of bitstreams: 1 Origin of antiferromagnetism in CoO A density functional theory study.pdf: 263570 bytes, checksum: 9128a541375fb9fe9f761fc02ece4210 (MD5)
Resumo:
Using the transfer matrix renormalization group (TMRG) method, we study the connection between the first derivative of the thermal average of driving-term Hamiltonian (DTADH) and the trace of quantum critical behaviors at finite temperatures. Connecting with the exact diagonalization method, we give the phase diagrams and analyze the properties of each phase for both the ferromagnetic and anti-ferromagnetic frustrated J(3) anisotropy diamond chain models. The finite-temperature scaling behaviors near the critical regions are also investigated. Further, we show the critical behaviors driven by external magnetic field, analyze the formation of the 1/3 magnetic plateau and the influence of different interactions on those critical points for both the ferrimagnetic and anti-ferromagnetic distorted diamond chains.
Resumo:
We report a direct observation of excitonic polaron in InAs/GaAs quantum dots using the photoluminescence (PL) spectroscopy. We observe that a new peak s' emerges below the s-shell which has anomalous temperature dependence emission energy. The peak s' anticrosses with s at a certain temperature, with a large anticrossing gap up to 31 meV. The behavior of the new peak, which cannot be interpreted using Huang-Rhys model, provides a direct evidence for strong coupling between exciton and LO phonons, and the formation of the excitonic polaron. The strong coupling between exciton and phonons opens a way to coherently control the polaron states.