949 resultados para NO and synthase
Resumo:
Homocystinuria, due to a deficiency of the enzyme cystathionine beta-synthase (CBS), is an inborn error of sulphur-amino acid metabolism, This is an autosomal recessive disease which results in hyperhomocysteinaemia and a wide range of clinical features, including optic lens dislocation, mental retardation, skeletal abnormalities and premature thrombotic events, We report the identification of 5 missense mutations in the protein-coding region of the CBS gene from 3 patients with pyridoxine-nonresponsive homocystinuria. Reverse-transcription PCR was used to amplify CBS cDNA from each patient and the coding region was analysed by direct sequencing, The mutations detected included 3 novel (1058C --> T, 992C --> A and 1316G --> A) and 2 previously identified (430G --> A and 833C --> T) base alterations in the CBS cDNA, Each of these mutations predicts a single amino acid substitution in the CBS polypeptide, Appropriate cassettes of patient CBS cDNA, containing each of the above defined mutations, were used to replace the corresponding cassettes of normal CBS cDNA sequence within the bacterial expression vector pT7-7. These recombinant mutant and normal CBS constructs were expressed in Escherichia coli cells and the catalytic activities of the mutant proteins were compared with normal. All of the mutant proteins exhibited decreased catalytic activity in vitro, which confirmed the association between the individual mutation and CBS dysfunction in each patient.
Resumo:
Study Objectives: To test the effects of exercise training on sleep and neurovascular control in patients with systolic heart failure with and without sleep disordered breathing. Design: Prospective interventional study. Setting: Cardiac rehabilitation and exercise physiology unit and sleep laboratory. Patients: Twenty-five patients with heart failure, aged 42 to 70 years, and New York Heart Association Functional Class I-III were divided into 1 of 3 groups: obstructive sleep apnea (n = 8), central sleep apnea (n 9) and no sleep apnea (n = 7). Interventions: Four months of no-training (control) followed by 4 months of an exercise training program (three 60-minute, supervised, exercise sessions per week). Measures and Results: Sleep (polysomnography), microneurography, forearm blood flow (plethysmography), peak VO(2). and quality of life were evaluated at baseline and at the end of the control and trained periods. No significant changes occurred in the control period. Exercise training reduced muscle sympathetic nerve activity (P < 0.001) and increased forearm blood flow (P < 0.01), peak VO(2) (P < 0.01), and quality of life (P < 0.01) in all groups, independent of the presence of sleep apnea. Exercise training improved the apnea-hypopnea index, minimum O(2) saturation, and amount stage 3-4 sleep (P < 0.05) in patients with obstructive sleep apnea but had no significant effects in patients with central sleep apnea. Conclusions. The beneficial effects of exercise training on neurovascular function, functional capacity, and quality of life in patients with systolic dysfunction and heart failure occurs independently of sleep disordered breathing. Exercise training lessens the severity of obstructive sleep apnea but does not affect central sleep apnea in patients with heart failure and sleep disordered breathing.
Resumo:
Acute intermittent porphyria (AIP) is an inborn error of haem biosynthesis caused by a variety of mutations in the gene coding for hydroxymethylbilane synthase (HMB-S). The entire coding sequence of this gene, from each of three South African AIP patients, was therefore screened for mutations using chemical cleavage mismatch (CCM) analysis and any changes detected characterized by DNA sequencing. Three single base changes were identified; a G(77) to A in exon 3, a C-346 to T in exon 8 and a G(518) to A in exon 10. These missense mutations, previously reported to be present in other populations, are known to be responsible for the structurally deleterious amino acid replacements R26H, R116W and R173Q, respectively. The in vitro expression of the enzymes containing these mutations and the subsequent measurement of their specific activities revealed a reduction to approximately 4% of normal activity. (C) 1997 Academic Press Limited.
Resumo:
Pityriasis lichenoides (PL) is an inflammatory skin disease of unknown etiology. Nitric oxide (NO) has emerged as an important mediator of many physiological functions. The importance of NO-mediated signaling in skin diseases has been reported by several studies. A review of clinical records and histopathological slides of 34 patients diagnosed with PL was performed. Three different groups of skin biopsies including PL chronica (24 patients), PL et varioliformis acuta (10 patients) and 15 normal skin samples were subjected to the immunohistochemistry technique for inducible nitric oxide synthase (iNOS) detection. Normal skin group exhibited a few number of iNOS-positive cells in the dermis and rare positive cells in the upper epidermis, unlike abundant epidermal and dermal iNOS expression observed in both PL groups. According to our results, we hypothesize that NO produced by iNOS could participate in PL pathogenesis. Abnormal and persistent responses to unknown antigens, probably a pathogen, associated with NO immunoregulatory functions could contribute to the relapsing course observed in PL. NO anti-apoptotic effect on T-cell lymphocytes could play a role on maintenance of reactive T cells, leading to a T-cell lymphoid dyscrasia. Di Giunta G, Goncalves da Silva AM, Sotto MN. Inducible nitric oxide synthase in pityriasis lichenoides lesions.J Cutan Pathol 2009; 36: 325-330. (C) Blackwell Munksgaard 2008.
Resumo:
The present study aimed to evaluate the role of nitric oxide (NO) on hyperpnea-induced bronchoconstriction (HIB) and airway microvascular hyperpermeability (AMP). Sixty-four guinea pigs were anesthetized, tracheotonnized, cannulated, and connected to animal ventilator to obtain pulmonary baseline respiratory system resistance (Rrs). Animals were then submitted to 5 minutes hyperpnea and Rrs was evaluated during 15 minutes after hyperpnea. AMP was evaluated by Evans blue dye (25 mg/kg) extravasation in airway tissues. Constitutive and inductible NO was evaluated by pretreating animals with N(G)-nitro-1-arginine methyl ester (I-NAME) (50 mg/kg), aminoguadinine (AG) (50 mg/kg), and I-arginine (100 mg/kg) and exhaled NO (NOex) was evaluated before and after drug administration and hyperpnea. The results show that I-NAME potentiated (57%) HIB and this effect was totally reversed by I-arginine pretreatment, whereas AG did not have effect on HIB. I-NAME decreased basal AMP (48%), but neither I-NAME nor AG had any effect on hyperpnea-induced AMP. NOex levels were decreased by 50% with I-NAME, effect that was reversed by I-arginine treatment. These results suggest that constitutive but not inducible NO could have a bronchoprotective effect on HIB in guinea pigs. The authors also observed that neither constitutive nor inducible NO seems to have any effect on hyperpnea-induced AMP.
Resumo:
Glutamatergic transmission through metabotropic and ionotropic receptors, including kainate receptors, plays an important role in the nucleus of the solitary tract (NTS) functions. Glutamate system may interact with several other neurotransmitter systems which might also be influenced by steroid hormones. In the present study we analyzed the ability of systemic kainate to stimulate rat NTS neurons, which was evaluated by c-Fos as a marker of neuronal activation, and also to change the levels of NTS neurotransmitters such as GABA, NPY, CGRP, GAL, NT and NO by means of quantitative immunohistichemistry combined with image analysis. The analysis was also performed in adrenalectomized and kainate stimulated rats in order to evaluate a possible role of adrenal hormones on NTS neurotransmission. Male Wistar rats (3 month-old) were used in the present study. A group of 15 rats was submitted either to bilateral adrenalectomy or sham operation. Forty-eight hours after the surgeries, adrenalectomized rats received a single intraperitoneal injection of kainate (12 mg/kg) and the sham-operated rats were injected either with saline or kainate and sacrificed 8 hours later. The same experimental design was applied in a group of rats in order to register the arterial blood pressure. Systemic kainate decreased the basal values of mean arterial blood pressure (35%) and heart rate (22%) of sham-operated rats, reduction that were maintained in adrenalectomized rats. Kainate triggered a marked elevation of c-Fos positive neurons in the NTS which was 54% counteracted by adrenalectomy. The kainate activated NTS showed changes in the immunoreactive levels of GABA (143% of elevation) and NPY (36% of decrease), which were not modified by previous ablation of adrenal glands. Modulation in the levels of CGRP, GAL and NT immunoreactivities were only observed after kainate in the adrenalectomized rats. Treatments did not alter NOS labeling. It is possible that modulatory function among neurotransmitter systems in the NTS might be influenced by steroid hormones and the implications for central regulation of blood pressure or other visceral regulatory mechanisms control should be further investigated.
Resumo:
Objective. Increased GSK3B activity has been reported as a state marker of major affective episodes in patients with depression and bipolar disorder. No study so far has addressed GSK3B activity in late-life depression. The aims of the present study were to determine GSK3B activity in platelets of elderly patients with major depression, and the association between GSK3B activity and the severity of depressive symptoms and cognitive impairment. Methods. Forty drug-free elderly patients with major depressive episode were compared to healthy older adults (n == 13). Severity of the depressive episode and current cognitive state were determined by the Hamilton Depression Scale (HAM-D) and the Cambridge Cognitive Test (CAMCOG), respectively. Total- and ser-9-phosphorylated GSK3B (tGSK3B and pGSK3B) were determined in platelets by enzyme immunometric assays (EIA). GSK3B activity was indirectly inferred by the GSK3B ratio (i.e. pGSK3B/tGSK3B). Results. Elderly depressed patients had significantly lower pGSK3B levels (P == 0.03) and GSK3B ratio (P == 0.03), indicating higher GSK3B activity. Higher GSK3B activity were observed in patients with severe depressive episode (HAM-D scores > 22, P == 0.03) and with cognitive impairment (CAMCOG scores < 86, P == 0.01). Conclusion. The present findings provide additional evidence of the involvement of GSK3B in the pathophysiology of late-life major depression. Higher GSK3B activity may be more relevant in those patients with more severe depressive symptoms and cognitive impairment.
Resumo:
The liver involvement in the human visceral leishmaniasis (VL) has been related to parasitism and activated Kupffer cells with further occasional fibrotic alterations, especially after long-term disease without treatment. However, fibrotic alterations have been reported after therapy, whose clinical finding is the persistence of hepatomegaly. Fibrotic involvement of the liver after therapy was never well understood, and the aim of this study was to evaluate this finding through ultrastructural and morphometric analysis. A case-control study was performed with 20 patients (15 cases and five controls). Cases included patients with persistent hepatomegaly (residual) after treatment of VL submitted to liver biopsy to exclude other causes of liver enlargement, including serum tests of viral hepatitis. The material was evaluated by electron microcopy allowing ultrastructural with morphometric analysis of medium portion of hepatic lobule. Narrow sinusoidal lumen and prominent Kupffer cells were found with insignificant alterations of hepatocytes, pit, and endothelial cells. On ultrastructural analysis, the enlargement of the space of Disse was due to fibrous collagen, increase of number of Ito cells, and nonfibrous extracellular matrix that were associated with Kupffer cells enlargement. Immunohistochemistry showed an intense expression of TGF-beta in patients with VL. These findings suggest a production of TGF-beta by Kupffer cells that resulted in the characteristic fibrotic involvement of the liver. Residual hepatomegaly in visceral leishmaniasis could result from sustained Kupffer cell activation with perihepatocytic fibrosis.
Resumo:
Vascular remodeling is an important feature in asthma pathophysiology. Although investigations suggested that nitric oxide (NO) is involved in lung remodeling, little evidence established the role of inducible NO synthase (iNOS) isoform in bronchial vascular remodeling. The authors investigated if iNOS contribute to bronchial vascular remodeling induced by chronic allergic pulmonary inflammation. Guinea pigs were submitted to ovalbumin exposures with increasing doses (1 similar to 5 mg/mL) for 4 weeks. Animals received 1400W (iNOS-specific inhibitor) treatment for 4 days beginning at 7th inhalation. Seventy-two hours after the 7th inhalation, animals were anesthetized, mechanical ventilated, exhaled NO was collected, and lungs were removed and submitted to picrosirius and resorcin-fuchsin stains and to immunohistochemistry for matrix metalloproteinase-9 (MMP-9), tissue inhibitor of metalloproteinase-1 (TIMP-1), and transforming growth factor-beta (TGF-beta). Collagen and elastic fiber deposition as well as MMP-9, TIMP-1, and TGF-beta expression were increase in bronchial vascular wall in ovalbumin-exposed animals. The iNOS inhibition reduced all parameters studied. In this model, iNOS inhibition reduced the bronchial vascular extracellular remodeling, particularly controlling the collagen and elastic fibers deposition in pulmonary vessels. This effect can be associated to a reduction on TGF-beta and on metalloproteinase-9/TIMP-1 vascular expression. It reveals new therapeutic strategies and some possible mechanism related to specific iNOS inhibition to control vascular remodeling.
Resumo:
The objective of the present study was to investigate the correlation between macrophage activity and apoptosis in the polar forms of leprosy because the immunopathological phenomena involved in these forms are still poorly understood For this purpose, 29 skin biopsy samples obtained from patients with the polar forms of leprosy were analyzed. Macrophage activity and apoptosis were evaluated by immunohistochemistry using lysozyme, CD68, iNOS and caspase 3 as markers The nonparametric Mann-Whitney test and Spearman`s linear correlation test were used for statistical analysis The results suggest that the apoptosis rate is under the direct influence of macrophage activity in lesions of patients with the tuberculoid form In contrast, in lepromatous lesions other factors seem to induce programmed cell death, possibly TGF-beta. Further studies are necessary to identify additional factors involved in the immunopathogenesis of leprosy. (C) 2010 Elsevier Ltd. All rights reserved
Resumo:
Storage at low temperature is the most frequently used method to extend the shelf life of banana fruit, and is fundamental for extended storage and transport over long distances. However, storage and transport conditions must be carefully controlled because of the high susceptibility of many commercial cultivars to chilling injury. The physiological behavior of bananas at low temperatures has been studied to identify possible mechanisms of resistance to chilling injury. The aim of this work was to evaluate differences in the starch-to-sucrose metabolism of a less tolerant and susceptible (Musa acuminata, AAA cv. Nanicao) and a more tolerant (M. acuminata x Musa balbusiana, AAB, cv. Prata) banana cultivar to chilling injury. Fruits of these cultivars were stored in chambers at 13 degrees C for 15 d, at which point they were transferred to 19 degrees C, where they were left until complete ripening. The low temperature induced significant changes in the metabolism of starch and sucrose in comparison to fruit ripened only at 19 degrees C. The sucrose accumulation was slightly higher in cv. Prata, and different patterns of starch degradation, sucrose synthesis, activity and protein levels of the alpha-and beta-amylases, starch phosphorylase, sucrose synthase and sucrose phosphate synthase were detected between the cultivars. Our results suggest that starch-to-sucrose metabolism is likely part of the mechanism for cold acclimation in banana fruit, and the cultivar-dependent differences contribute to their ability to tolerate cold temperatures. (C) 2011 Elsevier B.V. All rights reserved.
Increased platelet GSK3B activity in patients with mild cognitive impairment and Alzheimer`s disease
Resumo:
The disruption of glycogen synthase kinase 3-beta (GSK3B) homeostasis has implications in the pathophysiology of neuropsychiatric disorders, namely Alzheimer`s disease (AD). GSK3B activity is increased within the AD brain, favoring the hyperphosphorylation of microtubule-associated protein Tau and the formation of neurofibrillary tangles. Such abnormality has also been detected in leukocytes of patients with cognitive disorders. The aim of the present study was to determine the expression of total and phosphorylated GSK3B at protein level in platelets of older adults with varying degrees of cognitive impairment, and to compare GSK3B activity in patients with AD, mild cognitive impairment (MCI) and healthy controls. Sixty-nine older adults were included (24 patients with mild to moderate AD, 22 patients with amnestic MCI and 23 elderly controls). The expression of platelet GSK3B (total- and Ser-9 phosphorylated GSK3B) was determined by Western blot. GSK3B activity was indirectly assessed by means of the proportion between phospho-GSK3B to total GSK3B (GSK3B ratio), the former representing the inactive form of the enzyme. Ser-9 phosphorylated GSK3B was significantly reduced in patients with MCI and AD as compared to controls (p = 0.04). Platelet GSK3B ratio was significantly decreased in patients with MCI and AD (p = 0.04), and positively correlated with scores on memory tests (r = 0.298, p = 0.01). In conclusion, we corroborate previous evidence of increased GSK activity in peripheral tissues of patients with MCI and AD, and further propose that platelet GSK may be an alternative peripheral biomarker of this abnormality, provided samples are adequately handled in order to preclude platelet activation. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Background: The role of platelets in hemostasis is well known, but few papers have reported their role in pain and edema induced by inflammatory agents. Objective: To evaluate the role of circulating platelets in the local injury induced by two diverse inflammatory agents, Bothrops jararaca venom (Bjv) and carrageenan. Methods: Rats were (i) rendered thrombocytopenic by administration of polyclonal anti-rat platelet IgG (ARPI) or busulfan, or (ii) treated with platelet inhibitors (aspirin or clopidogrel). Edema formation, local hemorrhage and the pain threshold were assessed after intraplantar injection of Bjv or carrageenan in rat hind paws. Additionally, whole platelets or platelet releasate were tested whether they directly induced hyperalgesia. Results: Platelet counts were markedly diminished in rats administered with either ARPI (+/- 88%) or busulfan (+/- 96%). Previous treatment with ARPI or busulfan slightly reduced edema induced by Bjv or carrageenan. Injection of Bjv, but not of carrageenan, induced a statistically significance increase in hemorrhage in the hind paws of thrombocytopenic rats. Remarkably, hyperalgesia evoked by Bjv or carrageenan was completely blocked in animals treated with ARPI or busulfan, or pre-treated with aspirin or clopidogrel. On the other hand, intraplantar administration of whole platelets or platelet releasate evoked hyperalgesia, which was inhibited by pre-incubation with alkaline phosphatase. Conclusions: Thrombocytopenia or inhibition of platelet function drastically reduced hyperalgesia induced by injection of carrageenan or Bjv; moreover, platelets per se secrete phosphorylated compounds involved in pain mediation. Thus, blood platelets are crucial cells involved in the pain genesis, and their role therein has been underestimated.
Resumo:
Objectives: Acute pancreatitis (AP) is a serious disease that is amplified by an associated systemic inflammatory response. We investigated the effect of CO(2) pneumoperitoneum on the local and systemic inflammatory response in AP. Methods: Acute pancreatitis was induced in Wistar rats by 5% taurocholate intraductal injection. Carbon dioxide pneumoperitoneum was applied for 30 minutes before the induction of AP. Inflammatory parameters were evaluated in the peritoneum (ascites, cell number, and tumor necrosis factor alpha [TNF-alpha]), serum (amylase, TNF-alpha, interleukin-6 [IL-6], and IL-10), pancreas (myeloperoxidase [MPO] activity, cyclooxygenase 2 and inducible nitric oxide synthase expression, and histological diagnosis), liver, and lung (mitochondria dysfunction and MPO activity). Results: Abdominal insufflation with CO(2) before induction of AP caused a significant decrease in ascites volume, cells, and TNF-alpha in the peritoneal cavity and in serum TNF-alpha and IL-6 but not IL-10 levels. In the pancreas, this treatment reduced MPO activity, acinar and fat necrosis, and the expression of inducible nitric oxide synthase and cyclooxygenase 2. There were no significant differences on serum amylase levels, liver mitochondrial function, and pulmonary MPO between groups. Conclusions: Our data demonstrated that CO(2) pneumoperitoneum reduced pancreatic inflammation and attenuated systemic inflammatory response in AP. This article suggests that CO(2) pneumoperitoneum plays a critical role on the better outcome in patients undergoing laparoscopic pancreatic surgery.
Resumo:
The aim of this study was to determine whether estrogen therapy enhances postexercise muscle sympathetic nerve activity (MSNA) decrease and vasodilation, resulting in a greater postexercise hypotension. Eighteen postmenopausal women received oral estrogen therapy (ET; n = 9, 1 mg/day) or placebo (n = 9) for 6 mo. They then participated in one 45-min exercise session (cycle ergometer at 50% of oxygen uptake peak) and one 45-min control session (seated rest) in random order. Blood pressure (BP, oscillometry), heart rate (HR), MSNA (microneurography), forearm blood flow (FBF, plethysmography), and forearm vascular resistance (FVR) were measured 60 min later. FVR was calculated. Data were analyzed using a two-way ANOVA. Although postexercise physiological responses were unaltered, HR was significantly lower in the ET group than in the placebo group (59 +/- 2 vs. 71 +/- 2 beats/min, P < 0.01). In both groups, exercise produced significant decreases in systolic BP (145 +/- 3 vs. 154 +/- 3 mmHg, P = 0.01), diastolic BP (71 +/- 3 vs. 75 +/- 2 mmHg, P = 0.04), mean BP (89 +/- 2 vs. 93 +/- 2 mmHg, P = 0.02), MSNA (29 +/- 2 vs. 35 +/- 1 bursts/min, P < 0.01), and FVR (33 +/- 4 vs. 55 +/- 10 units, P = 0.01), whereas it increased FBF (2.7 +/- 0.4 vs. 1.6 +/- 0.2 ml (.) min(-1) (.) 100 ml(-1), P = 0.02) and did not change HR (64 +/- 2 vs. 65 +/- 2 beats/min, P = 0.3). Although ET did not change postexercise BP, HR, MSNA, FBF, or FVR responses, it reduced absolute HR values at baseline and after exercise.