986 resultados para NEURODEGENERATIVE DISEASE
Resumo:
The inherent neurotoxic potential ofthe endogenous excitatory amino acid glutamate, may be causally related to the pathogenesis ofAD neurodegeneration disorders. Neuronal excitotoxicity is conceivably mediated by the N-methyl-D-aspartate-(NMDA)-Ca2+- ionotropic receptor. NMDA receptors exist as multimeric complexes comprising proteins from two families – NR1 and NR2(A-D). The polyamines, spermine and spermidine bind to, and modulate NMDA receptor efficacy via interaction with exon 5, an alternatively-spliced, 21 amino acid, N-terminal cassette. ADassociated cognitive impairment may therefore occur via subunitspecific NMDA receptor dysfunction effecting regional selectivity ofneuronal degradation. Total RNA was prepared from pathologically spared and susceptible regions from AD cases and matched controls. Quantitation was performed using standard curve methodology in which a known amount ofa synthetic ribonucleic acid competitor deletion construct was co-amplified against total RNA. Expression profile analysis oftwo NR1 mRNA subsets has revealed significant differences in NR11XX mRNA levels in cingulate gyrus, P.
Resumo:
Alzheimer’s disease is a neurodegenerative disorder which has been characterised with genetic (apolipoproteins), protein (ß-amyloid and tau) and lipid oxidation/metabolism alterations in its pathogenesis. In conjunction with the Dementia Research Group, Bristol University, investigation into genetic, protein and lipid oxidation in Alzheimer’s disease was conducted. A large sample cohort using the double-blind criteria, along with various clinical and chemical data sets were used to improve the statistical analysis and therefore the strength of this particular study. Bristol University completed genetic and protein analysis with lipid oxidation assays performed at Aston University. Lipid oxidation is a complex process that creates various biomarkers, from transient intermediates, to short carbon chain products and cyclic ring structures. Quantification of these products was performed on lipid extracts of donated clinical diseased and non-diseased frontal and temporal brain regions, from the Brain Bank within Frenchay Hospital. The initial unoxidised fatty acids, first transient oxidation intermediates the conjugated dienes and lipid hydroperoxides, the endpoint aldehyde biomarkers and finally the cyclic isoprostanes and neuroprostanes were determined to investigate lipid oxidation in Alzheimer’s. Antioxidant levels were also investigated to observe the effect of oxidation on the defence pathways. Assays utilised in this analysis included; fatty acid composition by GC-FID, conjugated diene levels by HPLC-UV and UV-spec, lipid hydroperoxide levels by FOX, aldehyde content by TBARs, antioxidant status by TEAC and finally isoprostane and neuroprostane quantification using a newly developed EI-MS method. This method involved the SIM of specific ions from F-ring isoprostane and neuroprostane fragmentation, which enabled EI-MS to be used for their quantification. Analyses demonstrated that there was no significant difference between control and Alzheimer samples across all the oxidation biomarkers for both brain regions. Antioxidants were the only marker that showed a clear variance; with Alzheimer samples having higher levels than the age matched controls. This unique finding is supported with the observed lower levels of lipid oxidation biomarkers in Alzheimer brain region samples. The increased antioxidant levels indicate protection against oxidation which may be a host response to counteract the oxidative pathways, but this requires further investigation. In terms of lipid oxidation, no definitive markers or target site for therapeutic intervention have been revealed. This study concludes that dietary supplementation of omega-3 fatty acids or antioxidants would most likely be ineffective against Alzheimer disease, although it may support improvement in other areas of general health.
Resumo:
A number of neurodegenerative diseases caused by prions have been described recently. These include Creutzfeldt-Jakob disease (CJD) in humans, scrapie in sheep and BSE in cows. Patients with CJD may suffer a range of visual problems including eye movement deficits and visual hallucinations. In addition, it is possible that CJD may be acquired via corneal transplant and that prions may be transmitted by reusable contact lenses.
Are pathological lesions in neurodegenerative disorders the cause or the effect of the degeneration?
Resumo:
Pathological lesions in the form of extracellular protein deposits, intracellular inclusions and changes in cell morphology occur in the brain in the majority of neurodegenerative disorders. Studies of the presence, distribution, and molecular determinants of these lesions are often used to define individual disorders and to establish the mechanisms of lesion pathogenesis. In most disorders, however, the relationship between the appearance of a lesion and the underlying disease process is unclear. Two hypotheses are proposed which could explain this relationship: (i) lesions are the direct cause of the observed neurodegeneration ('causal' hypothesis); and (ii) lesions are a reaction to neurodegeneration ('reaction' hypothesis). These hypotheses are considered in relation to studies of the morphology and molecular determinants of lesions, the effects of gene mutations, degeneration induced by head injury, the effects of experimentally induced brain lesions, transgenic studies and the degeneration of anatomical pathways. The balance of evidence suggests that in many disorders, the appearance of the pathological lesions is a reaction to degenerative processes rather than being their cause. Such a conclusion has implications both for the classification of neurodegenerative disorders and for studies of disease pathogenesis.
Resumo:
Discrete pathological lesions, which include extracellular protein deposits, intracellular inclusions and changes in cell morphology, occur in the brain in the majority of neurodegenerative disorders. These lesions are not randomly distributed in the brain but exhibit a spatial pattern, that is, a departure from randomness towards regularity or clustering. The spatial pattern of a lesion may reflect pathological processes affecting particular neuroanatomical structures and, therefore, studies of spatial pattern may help to elucidate the pathogenesis of a lesion and of the disorders themselves. The present article reviews first, the statistical methods used to detect spatial patterns and second, the types of spatial patterns exhibited by pathological lesions in a variety of disorders which include Alzheimer's disease, Down syndrome, dementia with Lewy bodies, Creutzfeldt-Jakob disease, Pick's disease and corticobasal degeneration. These studies suggest that despite the morphological and molecular diversity of brain lesions, they often exhibit a common type of spatial pattern (i.e. aggregation into clusters that are regularly distributed in the tissue). The pathogenic implications of spatial pattern analysis are discussed with reference to the individual disorders and to studies of neurodegeneration as a whole.
Resumo:
Parkinson's disease (PD) is a common neurodegenerative disorder affecting middle-aged and elderly people. The disorder is of particular interest to Optometrists because it is associated with a range of visual problems including defects in eye movement and pupillary function. This article reviews the visual complications of PD and the pathological changes in the eye and brain which may explain these symptoms.
Resumo:
Parkinson's disease is a common neurodegenerative disorder of middle-aged and elderly people. There are two aspects of the disease of special interest to optometrists. First, visual problems may be present in a proportion of patients with the disease. In addition, the disease is treated by a variety of drugs, some of which may have ocular complications. This article describes the incidence, symptoms, diagnosis, causes and changes in the brain in Parkinson's disease.
Resumo:
Corpora amylacea (CA) are spherical or ovoid bodies 50-50 microns in diameter. They have been described in normal elderly brain as well as in a number of neurodegenerative disorders. In this study, the incidence of CA in the optic nerves of Alzheimer's disease (AD) patients was compared with normal elderly controls. Samples of optic nerves (MRC Brain Bank, Institute of Psychiatry) were taken from 12 AD patients (age range 69-94 years) and 18 controls (43-82 years). Optic nerves were fixed in 2% buffered glutaraldehyde, post-fixed in osmium tetroxide, embedded in epoxy resin and then sectioned to a thickness of 2 microns. Sections were stained with toluidine blue. CA were present in all of the optic nerves examined. In addition, a number of similarly stained but more irregularly shaped bodies were present. Fewer CA were found in the optic nerves of AD patients compared with controls. By contrast, the number or irregularly shaped bodies was increased in AD. In AD, there may be a preferential decline in the large diameter fibres which may mediate the M-cell pathway. Hence, the decline in the incidence of CA in AD may be associated with a reduction in these fibres. It is also possible that the irregualrly shaped bodies are a degeneration product of the CA.
Resumo:
Alzheimer’s disease (AD) is an important neurodegenerative disorder causing visual problems in the elderly population. The pathology of AD includes the deposition in the brain of abnormal aggregates of ?-amyloid (A?) in the form of senile plaques (SP) and abnormally phosphorylated tau in the form of neurofibrillary tangles (NFT). A variety of visual problems have been reported in patients with AD including loss of visual acuity (VA), colour vision and visual fields; changes in pupillary responses to mydriatics, defects in fixation and in smooth and saccadic eye movements; changes in contrast sensitivity and in visual evoked potentials (VEP); and disturbances in complex visual tasks such as reading, visuospatial function, and in the naming and identification of objects. In addition, pathological changes have been observed to affect the eye, visual pathway, and visual cortex in AD. To better understand degeneration of the visual cortex in AD, the laminar distribution of the SP and NFT was studied in visual areas V1 and V2 in 18 cases of AD which varied in disease onset and duration. In area V1, the mean density of SP and NFT reached a maximum in lamina III and in laminae II and III respectively. In V2, mean SP density was maximal in laminae III and IV and NFT density in laminae II and III. The densities of SP in laminae I of V1 and NFT in lamina IV of V2 were negatively correlated with patient age. No significant correlations were observed in any cortical lamina between the density of NFT and disease onset or duration. However, in area V2, the densities of SP in lamina II and lamina V were negatively correlated with disease duration and disease onset respectively. In addition, there were several positive correlations between the densities of SP and NFT in V1 with those in area V2. The data suggest: (1) NFT pathology is greater in area V2 than V1, (2) laminae II/III of V1 and V2 are most affected by the pathology, (3) the formation of SP and NFT in V1 and V2 are interconnected, and (4) the pathology may spread between visual areas via the feed-forward short cortico-cortical connections.
Resumo:
The densities of diffuse, primitive, and classic ß-amyloid (Aß) deposits were studied in the temporal lobe in cognitively normal brain, dementia with Lewy bodies (DLB), familial Alzheimer’s disease (FAD), and sporadic AD (SAD). Principal components analysis (PCA) was used to determine whether there were distinct differences between groups or whether Aß pathology was more continuously distributed from group to group. Three principal components (PC) were extracted from the data accounting for 56% of the total variance. Plots of cases in relation to the PC did not result in distinct groups but suggested overlap in Aß deposition between the groups. In addition, there were linear correlations between the densities of Aß deposits and the distribution of the cases along the PC in specific brain regions suggesting continuous variation from group to group. PC1 was associated with the degree of maturation of Aß deposits, PC2 with differences between FAD and SAD, and PC3 with the degree of spread of Aß pathology into the hippocampus. Apolipoprotein E (APOE) genotype was not associated with variation in Aß deposition between cases. PCA may be a useful method of studying the pathological interface between closely related neurodegenerative disorders.
Resumo:
Deposition of ß-amyloid (Aß ), a 'signature' pathological lesion of Alzheimer's disease (AD), is also characteristic of Down's syndrome (DS), and has been observed in dementia with Lewy bodies (DLB) and corticobasal degeneration (CBD). To determine whether the growth of Aß deposits was similar in these disorders, the size frequency distributions of the diffuse ('pre-amyloid'), primitive ('neuritic'), and classic ('dense-cored') A ß deposits were compared in AD, DS, DLB, and CBD. All size distributions had essentially the same shape, i.e., they were unimodal and positively skewed. Mean size of Aß deposits, however, varied between disorders. Mean diameters of the diffuse, primitive, and classic deposits were greatest in DS, DS and CBD, and DS, respectively, while the smallest deposits, on average, were recorded in DLB. Although the shape of the frequency distributions was approximately log-normal, the model underestimated the frequency of smaller deposits and overestimated the frequency of larger deposits in all disorders. A 'power-law' model fitted the size distributions of the primitive deposits in AD, DS, and DLB, and the diffuse deposits in AD. The data suggest: (1) similarities in size distributions of Aß deposits among disorders, (2) growth of deposits varies with subtype and disorder, (3) different factors are involved in the growth of the diffuse/primitive and classic deposits, and (4) log-normal and power-law models do not completely account for the size frequency distributions.
Resumo:
The hippocampus (HC) and adjacent gyri are implicated in dementia in several neurodegenerative disorders. To compare HC pathology among disorders, densities of ‘signature’ pathological lesions were measured at a standard location in eight brain regions of 12 disorders. Principal components analysis of the data suggested that the disorders could be divided into three groups: (1) Alzheimer’s disease (AD), Down’s syndrome (DS), sporadic Creutzfeldt–Jakob disease, and variant Creutzfeldt–Jakob disease in which either β-amyloid (Aβ) or prion protein deposits were distributed in all sectors of the HC and adjacent gyri, with high densities being recorded in the parahippocampal gyrus and subiculum; (2) Pick’s disease, sporadic frontotemporal lobar degeneration with TDP-43 immunoreactive inclusions, and neuronal intermediate filament inclusion disease in which relatively high densities of neuronal cytoplasmic inclusions were present in the dentate gyrus (DG) granule cells; and (3) Parkinson’s disease dementia, dementia with Lewy bodies, progressive supranuclear palsy, corticobasal degeneration, and multiple system atrophy in which densities of signature lesions were relatively low. Variation in density of signature lesions in DG granule cells and CA1 were the most important sources of neuropathological variation among disorders. Hence, HC and adjacent gyri are differentially affected in dementia reflecting either variation in vulnerability of hippocampal neurons to specific molecular pathologies or in the spread of pathological proteins to the HC. Information regarding the distribution of pathology could ultimately help to explain variations in different cognitive domains, such as memory, observed in various disorders.
Resumo:
This article discusses the structure, anatomical connections, and functions of the hippocampus (HC) of the human brain and its significance in neuropsychology and disease. The HC is concerned with the analysis of highly abstract data derived from all sensory systems but its specific role remains controversial. Hence, there have been three major theories concerning its function, viz., the memory theory, the spatial theory, and the behavioral inhibition system (BIS) theory. The memory theory has its origin in the surgical destruction of the HC, which results in severe anterograde and partial retrograde amnesia. The spatial theory has its origin in the observation that neurons in the HC of animals show activity related to their location within the environment. By contrast, the behavioral inhibition theory suggests that the HC acts as a ‘comparator’, i.e., it compares current sensory events with expected or predicted events. If a set of expectations continues to be verified then no alteration of behavior occurs. If, however, a ‘mismatch’ is detected then the HC intervenes by initiating appropriate action by active inhibition of current motor programs and initiation of new data gathering. Understanding the anatomical connections of the hippocampus may lead to a greater understanding of memory, spatial orientation, and states of anxiety in humans. In addition, HC damage is a feature of neurodegenerative diseases such as Alzheimer’s disease (AD), dementia with Lewy bodies (DLB), Pick’s disease (PiD), and Creutzfeldt-Jakob disease (CJD) and understanding HC function may help to explain the development of clinical dementia in these disorders.
Resumo:
This article discusses the structure, anatomical connections, and functions of the hippocampus (HC) of the human brain and its significance in neuropsychology and disease. The HC is concerned with the analysis of highly abstract data derived from all sensory systems but its specific role remains controversial. Hence, there have been three major theories concerning its function, viz., the memory theory, the spatial theory, and the behavioral inhibition system (BIS) theory. The memory theory has its origin in the surgical destruction of the HC, which results in severe anterograde and partial retrograde amnesia. The spatial theory has its origin in the observation that neurons in the HC of animals show activity related to their location within the environment. By contrast, the behavioral inhibition theory suggests that the HC acts as a 'comparator', i.e., it compares current sensory events with expected or predicted events. If a set of expectations continues to be verified then no alteration of behavior occurs. If, however, a 'mismatch' is detected then the HC intervenes by initiating appropriate action by active inhibition of current motor programs and initiation of new data gathering. Understanding the anatomical connections of the hippocampus may lead to a greater understanding of memory, spatial orientation, and states of anxiety in humans. In addition, HC damage is a feature of neurodegenerative diseases such as Alzheimer's disease (AD), dementia with Lewy bodies (DLB), Pick's disease (PiD), and Creutzfeldt-Jakob disease (CJD) and understanding HC function may help to explain the development of clinical dementia in these disorders.
Resumo:
Alzheimer's disease (AD) is an important neurodegenerative disorder causing visual problems in the elderly population. The pathology of AD includes the deposition in the brain of abnormal aggregates of β-amyloid (Aβ) in the form of senile plaques (SP) and abnormally phosphorylated tau in the form of neurofibrillary tangles (NFT). A variety of visual problems have been reported in patients with AD including loss of visual acuity (VA), colour vision and visual fields; changes in pupillary responses to mydriatics, defects in fixation and in smooth and saccadic eye movements; changes in contrast sensitivity and in visual evoked potentials (VEP); and disturbances in complex visual tasks such as reading, visuospatial function, and in the naming and identification of objects. In addition, pathological changes have been observed to affect the eye, visual pathway, and visual cortex in AD. To better understand degeneration of the visual cortex in AD, the laminar distribution of the SP and NFT was studied in visual areas V1 and V2 in 18 cases of AD which varied in disease onset and duration. In area V1, the mean density of SP and NFT reached a maximum in lamina III and in laminae II and III respectively. In V2, mean SP density was maximal in laminae III and IV and NFT density in laminae II and III. The densities of SP in laminae I of V1 and NFT in lamina IV of V2 were negatively correlated with patient age. No significant correlations were observed in any cortical lamina between the density of NFT and disease onset or duration. However, in area V2, the densities of SP in lamina II and lamina V were negatively correlated with disease duration and disease onset respectively. In addition, there were several positive correlations between the densities of SP and NFT in V1 with those in area V2. The data suggest: (1) NFT pathology is greater in area V2 than V1, (2) laminae II/III of V1 and V2 are most affected by the pathology, (3) the formation of SP and NFT in V1 and V2 are interconnected, and (4) the pathology may spread between visual areas via the feed-forward short cortico-cortical connections. © 2012 by Nova Science Publishers, Inc. All rights reserved.