789 resultados para NANOCRYSTALS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lead sulfide (PbS) microtowers on silicon substrates, having the physical properties of bulk PbS, have been synthesized. Optical nonlinearity studies using the open aperture z-scan technique employing 5 ns and 100 fs laser pulses reveal effective two-photon type absorption. For nanosecond excitation the nonlinear absorption coefficients (beta(eff)) are in the order of 10(-11) m W-1, two orders of magnitude less than the values reported for quantum confined PbS nanocrystals. For femtosecond excitation beta(eff) is of the order of 10(-14) m W-1. These results obtained in bulk PbS experimentally confirm the importance of quantum confinement in the enhancement of optical nonlinearities in semiconductor materials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

X-ray synchrotron radiation was used to study the nanostructure of cellulose in Norway spruce stem wood and powders of cobalt nanoparticles in cellulose support. Furthermore, the growth of metallic clusters was modelled and simulated in the mesoscopic size scale. Norway spruce was characterized with x-ray microanalysis at beamline ID18F of the European Synchrotron Radiation Facility in Grenoble. The average dimensions and the orientation of cellulose crystallites was determined using x-ray microdiffraction. In addition, the nutrient element content was determined using x-ray fluorescence spectroscopy. Diffraction patterns and fluorescence spectra were simultaneously acquired. Cobalt nanoparticles in cellulose support were characterized with x-ray absorption spectroscopy at beamline X1 of the Deutsches Elektronen-Synchrotron in Hamburg, complemented by home lab experiments including x-ray diffraction, electron microscopy and measurement of magnetic properties with a vibrating sample magnetometer. Extended x-ray absorption fine structure spectroscopy (EXAFS) and x-ray diffraction were used to solve the atomic arrangement of the cobalt nanoparticles. Scanning- and transmission electron microscopy were used to image the surfaces of the cellulose fibrils, where the growth of nanoparticles takes place. The EXAFS experiment was complemented by computational coordination number calculations on ideal spherical nanocrystals. The growth process of metallic nanoclusters on cellulose matrix is assumed to be rather complicated, affected not only by the properties of the clusters themselves, but essentially depending on the cluster-fiber interfaces as well as the morphology of the fiber surfaces. The final favored average size for nanoclusters, if such exists, is most probably a consequence of these two competing tendencies towards size selection, one governed by pore sizes, the other by the cluster properties. In this thesis, a mesoscopic model for the growth of metallic nanoclusters on porous cellulose fiber (or inorganic) surfaces is developed. The first step in modelling was to evaluate the special case of how the growth proceeds on flat or wedged surfaces.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spherical and rod like nanocrystalline Nd2O3 phosphors have been prepared by solution combustion and hydrothermal methods respectively The Powder X-ray diffraction (PXRD) results confirm that hexagonal A-type Nd2O3 has been obtained with calcination at 900 C for 3 h and the lattice parameters have been evaluated by Rietveld refinement Surface morphology of Nd2O3 phosphors show the formation of nanorods in hydrothermal synthesis whereas spherical particles in combustion method TEM results also confirm the same Raman studies show major peaks which are assigned to F-g and combination of A(g) + E-g modes The PL spectrum shows a series of emission bands at similar to 326-373 nm (UV) 421-485 nm (blue) 529-542 nm (green) and 622 nm (red) The UV blue green and red emission in the PL spectrum indicates that Nd2O3 nanocrystals are promising for high performance materials and white light emitting diodes (LEDs) (C) 2010 Elsevier B V All rights reserved

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanostructured carbon nitride films were prepared by pyrolysis assisted chemical vapour deposition. A two zone furnace with a uniform temperature over a length of 20 cm in both the zones was built. The precursor Azabenzimidazole (C6H5N3) taken in a quartz tube was evaporated at zone A and pyrolysed at zone B at a temperature of 800 degrees C. The FTIR spectrum of the prepared sample shows peaks at 1272 cm(-1) and 1591 cm(-1) corresponding to C-N stretching and C=N respectively, which confirms the bonding of nitrogen with carbon. Raman D and G peaks are observed at 1357 cm(-1) and 1560 cm(-1) respectively. X-ray photoelectron spectroscopy (XPS) shows the formation of pi bonding between carbon and nitrogen atoms. These observations along with XRD analysis show the formation of crystallites of alpha-C3N4 and beta-C3N4 in the background of graphitic C3N4. The size of the nanocrystals estimated from the SEM images is similar to 100 nm.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report a reversible phase transformation of platelet-shaped ZnS nanostructures between wurtzite (WZ) and zinc blende (ZB) phases by reversible insertion/ ejection of dopant Mn(II) ions induced by a thermocyclic process. In a reaction flask loaded with WZ ZnS platelets and Mn molecular precursors, during heating Mn ions are incorporated and change the phase of the host nanostructures to ZB; during cooling Mn ions are spontaneously ejected, returning the host nanoplatelets to the original WZ phase. These reversible changes are monitored for several cycles with PL, EPR, XRD, and HRTEM. Interestingly, the (0001) WZ platelets transform to (110) ZB following a nucleation and growth process triggered by a local increase/depletion of the Mn2+ concentration in the nanocrystals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report a reversible phase transformation of platelet-shaped ZnS nanostructures between wurtzite (WZ) and zinc blende (ZB) phases by reversible insertion/ ejection of dopant Mn(II) ions induced by a thermocyclic process. In a reaction flask loaded with WZ ZnS platelets and Mn molecular precursors, during heating Mn ions are incorporated and change the phase of the host nanostructures to ZB; during cooling Mn ions are spontaneously ejected, returning the host nanoplatelets to the original WZ phase. These reversible changes are monitored for several cycles with PL, EPR, XRD, and HRTEM. Interestingly, the (0001) WZ platelets transform to (110) ZB following a nucleation and growth process triggered by a local increase/depletion of the Mn2+ concentration in the nanocrystals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The synthesis of nanostructured materials is a critical step in the development elf these novel materials. The basic principles involved in the production of nanocrystals and nanocomposites by rapid solidification are dealt with. An analysis of the various factors influencing the final grain size of the nanocrystals achieved during mechanical alloying has been presented. The devitrification of amorphous phase formed during rapid solidification processing and mechanical alloying provides an alternative and attractive route. Examples of the synthesis of nanostructured materials using these three different routes are drawn from our work on titanium alloys.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Novel, volatile, stable, oxo-β-ketoesterate complexes of titanium, whose synthesis requires only an inert atmosphere, as opposed to a glove box, have been developed. Using one of the complexes as the precursor, thin films of TiO2 have been deposited on glass substrates by metalorganic chemical vapor deposition (MOCVD) at temperatures ranging from 400°C to 525°C and characterized by scanning electron microscopy, transmission electron microscopy, and atomic force microscopy. All the films grown in this temperature range are very smooth; those grown above 480°C consist of nearly monodisperse, nanocrystals of the anatase phase. Optical studies show the bandgaps in the range 3.4–3.7 eV for films grown at different temperatures. Thin films of anatase TiO2 have also been grown by spin-coating technique using another ketoesterate complex of titanium, demonstrating that the newly developed complexes can be successfully used for thin film growth by various chemical routes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rapid solidification, mechanical alloying and devitrificaiton of precursor metallic glasses are all possible routes for the synthesis of nanocrystals and nanocomposites, though their efficacy is system dependent. In a comprehensive study of alloys across the Ti-Ni phase diagram, nanocrystals of Ti and Ni and nanocomposites of alpha -Ti and Ti sub 2 Ni, Ti sub 2 Ni and TiNi and beta -Ti and glass have been produced. By the addition of Al, devitrification of metallic glasses created by mechanical alloying led to nanocrystalline intermetallic compounds. The evolution of these nanocrystalline microstructures has been rationalized on the basis of thermodynamic and kinetic considerations involving the metastable phase diagram for this system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We show with the aid of first-principles electronic structure calculations that suitable choice of the capping ligands may be an important control parameter for crystal structure engineering of nanoparticles. Our calculations on CdS nanocrystals reveal that the binding energy of model trioctylphosphine molecules on the (001) facets of zincblende nanocrystals is larger compared to that on wurtzite facets. Similarly, the binding energy of model cis-oleic acid is found to be dominant for the (10 (1) over bar0) facets of wurtzite structure. As a consequence, trioctylphosphine as a capping agent stabilizes the zincblende structure while cis-oleic acid stabilizes the wurtzite phase by influencing the surface energy, which has a sizable contribution to the energetics of a nanocrystal. Our detailed analysis suggests that the binding of molecules on the nanocrystalline facets depends on the surface topology of the facets, the coordination of the surface atoms where the capping molecule is likely to attach, and the conformation of the capping molecule.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Zn(1-x)Fe(x)O(1+0.5x) (x = 0.5-5 mol%) nanoparticles were synthesized by a low temperature solution combustion route. The structural characterization of these nanoparticles by PXRD, SEM and TEM confirmed the phase purity of the samples and indicated a reduction in the particle size with increase in Fe content. A small increase in micro strain in the Fe doped nanocrystals is observed from W-H plots. EPR spectrum exhibits an intense resonance signal with effective g values at g approximate to 2.0 with a sextet hyperfine structure (hfs) besides a weak signal at g approximate to 4.13. The signal at g approximate to 2.0 with a sextet hyperfine structure might be due to manganese impurity where as the resonance signal at g approximate to 4.13 is due to iron. The optical band gap E-g was found to decrease with increase of Fe content. Raman spectra exhibit two non-polar optical phonon (E-2) modes at low and high frequencies at 100 and 435 cm(-1) in Fe doped samples. These modes broaden and disappear with increase of Fe do pant concentration. TL measurements of gamma-irradiated (1-5 kGy) samples show a main glow peak at 368 degrees C at a warming rate of 6.7 degrees Cs-1. The thermal activation parameters were estimated from Glow peak shape method. The average activation energy was found to be in the range 0.34-2.81 eV. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In 2003, Babin et al. theoretically predicted (J. Appl. Phys. 94:4244, 2003) that fabrication of organic-inorganic hybrid materials would probably be required to implement structures with multiple photonic band gaps. In tune with their prediction, we report synthesis of such an inorganic-organic nanocomposite, comprising Cu4O3-CuO-C thin films that experimentally exhibit the highest (of any known material) number (as many as eleven) of photonic band gaps in the near infrared. On contrary to the report by Wang et al. (Appl. Phys. Lett. 84:1629, 2004) that photonic crystals with multiple stop gaps require highly correlated structural arrangement such as multilayers of variable thicknesses, we demonstrate experimental realization of multiple stop gaps in completely randomized structures comprising inorganic oxide nanocrystals (Cu4O3 and CuO) randomly embedded in a randomly porous carbonaceous matrix. We report one step synthesis of such nanostructured films through the metalorganic chemical vapor deposition technique using a single source metalorganic precursor, Cu-4(deaH)(dea)(oAc)(5) a <...aEuro parts per thousand(CH3)(2)CO. The films displaying multiple (4/9/11) photonic band gaps with equal transmission losses in the infrared are promising materials to find applications as multiple channel photonic band gap based filter for WDM technology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A simple, rapid, and surfactant-free synthesis of crystalline copper nanostructures has been carried out through microwave irradiation of a solution of copper acetylacetonate in benzyl alcohol. The structures are found to be stable against oxidation in ambient air for several months. High-resolution electron microscopy (SEM and TEM) reveals that the copper samples comprise nanospheres measuring about 150 nm in diameter, each made of copper nanocrystals similar to 7 nm in extension. The nanocrystals are densely packed into spherical aggregates, the driving force being minimization of surface area and surface energy, and are thus immune to oxidation in ambient air. Such aggregates can also be adherently supported on SiO2 and Al2O3 when these substrates are immersed in the irradiated solution. The air-stable copper nanostructures exhibit surface enhanced Raman scattering, as evidenced by the detection of 4-mercaptobenzoic acid at 10(-6) M concentrations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We review the existing literature on the application of X-ray photoelectron spectroscopy in the study of nanocrystals. The unique ability of this technique to provide quantitative and reliable descriptions of highly complex internal structures of a variety of nanocrystals has been discussed in detail. We show that an accurate description of the nanocrystal internal structure is crucial and a prerequisite to understand many different properties, particularly optical properties, of such nanocrystal systems. We also discuss limitations and future outlook of this technique.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this article we have demonstrated the influence of growth-temperature on the morphology and orientation of SnS films deposited by thermal evaporation technique. While increasing the growth-temperature, the morphology of SnS films changed from flakes-like nanocrystals to regular cubes, whereas their orientation shifted from <111> to <040> direction. The chemical composition of SnS films gradually changed from sulfur-rich to tin-rich with the increase of growth-temperature. The structural analyzes reveal that the crystal structure of SnS films probably changes from orthorhombic to tetragonal at the growth-temperature of about 410 degrees C. Raman studies show that SnS films grown at all temperatures consist of purely SnS phase, whereas the optical studies reveal that the direct optical bandgap of SnS films decreased with the increase of growth-temperature. From these results it has been emphasized that the morphology and orientation along with electrical and optical properties of nearly stoichiometric SnS films strongly depend on their growth-temperature.