517 resultados para NADPH oxidade


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dehydroepiandrosterone ( DHEA) is known as an intermediate in the synthesis of mammalian steroids and a potent uncompetitive inhibitor of mammalian glucose-6-phosphate dehydrogenase (G6PDH), but not the enzyme from plants and lower eukaryotes. G6PDH catalyzes the first step of the pentose-phosphate pathway supplying cells with ribose 5-phosphate, a precursor of nucleic acid synthesis, and NADPH for biosynthetic processes and protection against oxidative stress. In this paper we demonstrate that also G6PDH of the protozoan parasite Trypanosoma brucei is uncompetitively inhibited by DHEA and epiandrosterone (EA), with K(i) values in the lower micromolar range. A viability assay confirmed the toxic effect of both steroids on cultured T. brucei bloodstream form cells. Additionally, RNAi mediated reduction of the G6PDH level in T. brucei bloodstream forms validated this enzyme as a drug target against Human African Trypanosomiasis. Together these findings show that inhibition of G6PDH by DHEA derivatives may lead to the development of a new class of anti-trypanosomatid compounds. Crown Copyright (C) 2009 Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glucose 6-phosphate dehydrogenase (G6PDH) catalyzes the first step of the pentose-phosphate pathway which supplies cells with ribose 5-phosphate (R5P) and NADPH. R5P is the precursor for the biosynthesis of nucleotides while NADPH is the cofactor of several dehydrogenases acting in a broad range of biosynthetic processes and in the maintenance of the cellular redox state. RNA interference-mediated reduction of G6PDH levels in bloodstream-form Trypanosoma brucei validated this enzyme as a drug target against Human African Trypanosomiasis. Dehydroepiandrosterone (DHEA), a human steroidal pro-hormone and its derivative 16 alpha-bromoepiandrosterone (16BrEA) are uncompetitive inhibitors of mammalian G6PDH. Such steroids are also known to enhance the immune response in a broad range of animal infection models. It is noteworthy that the administration of DHEA to rats infected by Trypanosoma cruzi, the causative agent of Human American Trypanosomiasis (also known as Chagas` disease), reduces blood parasite levels at both acute and chronic infection stages. In the present work, we investigated the in vitro effect of DHEA derivatives on the proliferation of T. cruzi epimastigotes and their inhibitory effect on a recombinant form of the parasite`s G6PDH (TcG6PDH). Our results show that DHEA and its derivative epiandrosterone (EA) are uncompetitive inhibitors of TcG6PDH, with K(i) values of 21.5 +/- 0.5 and 4.8 +/- 0.3 mu M, respectively. Results from quantitative inhibition assays indicate 16BrEA as a potent inhibitor of TcG6PDH with an IC(50) of 86 +/- 8 nM and those from in vitro cell viability assays confirm its toxicity for T. cruzi epimastigotes, with a LD(50) of 12 +/- 8 mu M. In summary, we demonstrated that, in addition to host immune response enhancement, 16BrEA has a direct effect on parasite viability, most likely as a consequence of TcG6PDH inhibition. Crown Copyright (C) 2010 Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mitochondrial ATP-sensitive potassium channel (mK(ATP)) is important in the protective mechanism of ischemic preconditioning (IPC). The channel is reportedly sensitive to reactive oxygen and nitrogen species, and the aim of this study was to compare such species in parallel, to build a more comprehensive picture of mK(ATP) regulation. mK(ATP) activity was measured by both osmotic swelling and Tl(+) flux assays, in isolated rat heart mitochondria. An isolated adult rat cardiomyocyte model of ischemia-reperfusion (IR) injury was also used to determine the role of mK(ATP) in cardioprotection by nitroxyl. Key findings were as follows: (i) mK(ATP) was activated by O(2)(center dot-) and H(2)O(2) but not other peroxides. (ii) mK(ATP) was inhibited by NADPH. (iii) mK(ATP) was activated by S-nitrosothiols, nitroxyl, and nitrolinoleate. The latter two species also inhibited mitochondrial complex II. (iv) Nitroxyl protected cardiomyocytes against IR injury in an mK(ATP)-dependent manner. Overall, these results suggest that the mK(ATP) channel is activated by specific reactive oxygen and nitrogen species, and inhibited by NADPH. The redox modulation of mK(ATP) may be an underlying mechanism for its regulation in the context of IPC. This article is part of a Special Issue entitled: Mitochondria and Cardioprotection. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Serum amyloid A (SAA) levels are elevated highly in acute phase response and elevated slightly and persistently in chronic diseases such as rheumatoid arthritis and diabetes. Given that fibroblasts exert profound effects on progression of inflammatory chronic diseases, the aim of this study was to investigate the response of fibroblasts to SAA. A dose-dependent increase in O(2)(-) levels was observed by treatment of fibroblasts with SAA (r = 0.99 and P <= 0.001). In addition, the expression of p47-phox was up-regulated by SAA (P < 0.001) and diphenyliodonium (DPI), a nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor, reduced the release of O(2)(-) by 50%. Also, SAA raised fibroblast proliferation (P < 0.001) and this effect was completely abolished by the addition of anti-oxidants (P < 0.001). These findings support the notion that, in chronic inflammatory sites, SAA activated fibroblast proliferation and ROS production.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have recently demonstrated that hypertriglyceridemic (HTG) mice present both elevated body metabolic rates and mild mitochondrial uncoupling in the liver owing to stimulated activity of the ATP-sensitive potassium channel (mitoK(ATP)). Because lipid excess normally leads to cell redox imbalance, we examined the hepatic oxidative status in this model. Cell redox imbalance was evidenced by increased total levels of carbonylated proteins, malondialdehydes, and GSSG/GSH ratios in HTG livers compared to wild type. In addition, the activities of the extramitochondrial enzymes NADPH oxidase and xanthine oxidase were elevated in HTG livers. In contrast, Mn-superoxide dismutase activity and content, a mitochondrial matrix marker, were significantly decreased in HTG livers. isolated HTG liver mitochondria presented lower rates of H(2)O(2) production, which were reversed by mitoK(ATP) antagonists. In vivo antioxidant treatment with N-acetylcysteine decreased both mitoKATP activity and metabolic rates in HTG mice. These data indicate that high levels of triglycerides increase reactive oxygen generation by extramitochondrial enzymes that promote MitoK(ATP) activation. The mild uncoupling mediated by mitoK(ATP) increases metabolic rates and protects mitochondria against oxidative damage. Therefore, a biological role for mitoK(ATP) is a redox sensor is shown here for the first time in an in vivo model of systemic and cellular lipid excess, (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have demonstrated previously that the complex bis[(2-oxindol-3-ylimino)-2-(2-aminoethyl)pyridine-N,N`]copper(II), named [Cu(isaepy)(2)], induces AMPK (AMP-activated protein kinase)-dependent/p53-mediated apoptosis in tumour cells by targeting mitochondria. In the present study, we found that p38(MAPK) (p38 mitogen-activated protein kinase) is the molecular link in the phosphorylation cascade connecting AMPK to p53. Transfection of SH-SY5Y cells with a dominant-negative mutant of AMPK resulted in a decrease in apoptosis and a significant reduction in phospho-active p38(MAPK) and p53. Similarly, reverse genetics of p38(MAPK) yielded a reduction in p53 and a decrease in the extent of apoptosis, confirming an exclusive hierarchy of activation that proceeds via AMPK/p38(MAPK)/p53. Fuel supplies counteracted [Cu(isaepy)(2)]-induced apoptosis and AMPK/p38(MAPK)/p53 activation, with glucose being the most effective, suggesting a role for energetic imbalance in [Cu(isaepy)(2)] toxicity. Co-administration of 3BrPA (3-bromopyruvate), a well-known inhibitor of glycolysis, and succinate dehydrogenase, enhanced apoptosis and AMPK/p38(MAPK)/p53 signalling pathway activation. Under these conditions, no toxic effect was observed in SOD (superoxide dismutase)-overexpressing SH-SY5Y cells or in PCNs (primary cortical neurons), which are, conversely, sensitized to the combined treatment with [Cu(isaepy)(2)] and 3BrPA only if grown in low-glucose medium or incubated with the glucose-6-phosphate dehydrogenase inhibitor dehydroepiandrosterone. Overall, the results suggest that NADPH deriving from the pentose phosphate pathway contributes to PCN resistance to [Cu(isaepy)(2)] toxicity and propose its employment in combination with 3BrPA as possible tool for cancer treatment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In young cells of leaf meristems the progenitors of chloroplasts are small organelles known as proplastids, which divide and differentiate into chloroplasts. However, in the absence of light, proplastids undergo a different sequence of development and become etioplasts. When light is supplied to etiolated plants during the "greening" process, etioplasts differentiate into chloroplasts containing chlorophyll. An important light dependent step in chlorophyll biosynthesis is the photoreduction of protochlorophyllide to chlorophyllide by the NADPH:protochlorophyllide reductase (PCR) enzyme. This enzyme is present at high activity only in etiolated tissue and during early stages of light-induced chlorophyll synthesis. The enzyme and its corresponding mRNAs decrease dramatically with prolonged exposure to light. We have investigated the light-dependent transcriptional regulation of a PCR gene in greening maize leaf cells using a transient expression assay based on microprojectile bombardment. The promoter region was isolated and cloned into a ?-glucuronidase (GUS) reporter gene expression plasmid. We have used this chimeric plasmid in tungsten particle bombardment of both etiolated and greening maize seedling leaves to determine whether the cloned promoter region contains regulatory sequences that control light-responsive PCR gene expression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A G6PD é expressa em todos os tecidos, onde catalisa a primeira etapa da via das pentoses-fosfato. O NADPH produzido pela ação da G6PD serve como doador de elétrons na biossíntese redutora. Pelo fato de os glóbulos vermelhos não terem mitocôndria, a via das pentoses-fosfato é a única fonte de NADPH e essencial para sua proteção contra o stress oxidativo. A deficiência da G6PD é classificada como anemia hemolítica hereditária ligada ao cromossomo X, associada a manifestações clínicas heterogêneas. O gene da G6PD possui cerca de 140 variantes moleculares já descritas, muitas dessas associadas à enzimopatia. Considerando-se a alta freqüência populacional da deficiência de G6PD, a constituição da população do Rio Grande do Sul e as dificuldades diagnósticas desta deficiência, este trabalho teve como objetivo caracterizar os aspectos laboratoriais do diagnóstico da deficiência de G6PD em nosso meio. Para a quantificação da atividade da G6PD, foi utilizado o método enzimáticocolorimétrico com normalização da hemoglobina (kit intercientífica) e para as análises moleculares foram investigadas as mutações 202, 376 e 563 por PCR/RFLP. O presente estudo revelou uma prevalência combinada de 7,9% das duas formas de deficiência de G6PD (completa e parcial) no Rio Grande do Sul, com alta prevalência de pacientes parcialmente deficientes e sem correlação com origem étnica. Usando técnicas bioquímicas e moleculares, foi caracterizada a deficiência de G6PD em amostras de Porto Alegre como sendo principalmente devida às mutações G202A e A376G, representando a variante G6PD A-, confirmando uma distribuição homogênea do padrão G6PD A- no Brasil. Os resultados apresentados aqui demonstraram que as condições de estocagem (temperatura principalmente) desempenham um papel fundamental na atividade da G6PD, especialmente nas coletas em papel filtro. Na avaliação da acurácia do método enzimático de medida da atividade da G6PD as sensibilidades e especificidades calculadas para os valores de cut-off estabelecido em uma população normal foram: para 2,9 U/gHb ( 11,4% e 100%), para 8 U/g Hb (77,1% e 94,7%) e para 11,5 U/g hb (97,1% e 76,3%). Estima-se que a deficiência de ambas as formas combinadas de G6PD seja de aproximadamente 8% numa amostra do RS. A partir de uma probabilidade pré-teste de 8,0%, após a realização do ensaio enzimático, a probabilidade pós-teste de uma pessoa ser deficiente de G6PD com nível enzimático inferior a 8 U/g Hb passa a ser 55,9%. Ao passo que para níveis superiores a 11,5 U/gHb esta probabilidade de deficiência diminui para 0,37%. Pode-se concluir que o método empregado (kit Intercientífica) foi adequado para avaliar a atividade enzimática de G6PD em amostras de sangue total. É um método capaz de detectar a deficiência de G6PD, demonstrando de forma satisfatória o grau de deficiência em indivíduos que possuem mutações que causam deficiência enzimática menos severa, inclusive mulheres heterozigotas. A análise molecular pode identificar o tipo de variante mas não pode indicar o risco real para as mulheres portadoras, que é diretamente estimado pelo nível de atividade enzimática.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cellular and molecular characteristics of a cell line (BME26) derived from embryos of the cattle tick Rhipicephalus (Boophilus) microplus were studied. The cells contained glycogen inclusions, numerous mitochondria, and vesicles with heterogeneous electron densities dispersed throughout the cytoplasm. Vesicles contained lipids and sequestered palladium meso-porphyrin (Pd-mP) and rhodamine-hemoglobin, suggesting their involvement in the autophagic and endocytic pathways. The cells phagocytosed yeast and expressed genes encoding the antimicrobial peptides (microplusin and defensin). A cDNA library was made and 898 unique mRNA sequences were obtained. Among them, 556 sequences were not significantly similar to any sequence found in public databases. Annotation using Gene Ontology revealed transcripts related to several different functional classes. We identified transcripts involved in immune response such as ferritin, serine proteases, protease inhibitors,. antimicrobial peptides, heat shock protein, glutathione S-transferase, peroxidase, and NADPH oxidase. BME26 cells transfected with a plasmid carrying a red fluorescent protein reporter gene (DsRed2) transiently expressed DsRed2 for up to 5 weeks. We conclude that BME26 can be used to experimentally analyze diverse biological processes that occur in R. (B.) microplus such as the innate immune response to tick-borne pathogens. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The NADPH-diaphorase (NADPH-d) positive myoenteric neurons from the body of the stomach of rats with streptozotocin-induced diabetes with or without supplementation with acetyl-L-carnitine (ALC) were evaluated. At the age of 105 days the animals were divided into four groups: normoglycaemic (C), normoglycaemic supplemented with ALC (CC), diabetic (D) and diabetic supplemented with ALC (DC). The supplementation with ALC (200 mg/kg body weight/day) to groups CC and DC was made during 105 days. After this period the animals were killed and the stomach removed and subjected to the histochemical technique of NADPH-d for the staining of the neurons of the myoenteric plexus. The area of 500 neurons of each group was investigated, as well as the neuronal density in an area of 23.84 mm(2) in each stomach. ALC promoted reduction (P < 0.05) of fasting glycaemia, water ingestion and areas of the profiles of the cell bodies of the NADPH-d neurons in the diabetic animals. The density of these neurons was not statistically different in the groups studied. It is suggested, therefore, a moderate neuroprotective effect of ALC, because the diminishment of the areas of the neuronal profiles in the supplemented diabetic animals, although being statistically significant relative to the non-supplemented diabetics, was not sufficient to equal the values from the non-diabetic controls.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As enzimas G6PD e 6PGD são responsáveis pela geração do aporte de NADPH, necessário para a detoxificação dos agentes oxidantes produzidos pelo estresse oxidativo metabólico nos eritrócitos. Devido à alta prevalência de deficiência de G6PD na população mundial, principalmente de origem negróide africana, muitos estudos têm sido realizados na tentativa de conhecer melhor a atuação destas enzimas. O objetivo deste estudo foi avaliar a atividade enzimática da 6PGD, nos deficientes de G6PD, para verificar a existência de aumento da atividade desta enzima, correlacionando com um possível aumento do número de reticulócitos ou presença de alterações da série vermelha. A pesquisa em 2.657 indivíduos do sexo masculino resultou em 97 deficientes de G6PD, determinando uma prevalência de 3,65% para a região de Bauru (SP), com atividade enzimática média de G6PD de 1,74 UI.g Hb-1. min-1 a 37ºC, 14,4% da atividade da G6PD normal. A atividade enzimática média da 6PGD foi de 9,5 UI.g Hb-1. min-1 a 37ºC, estando aumentada em 47,4% dos deficientes de G6PD. Os resultados não confirmaram que a hipótese do aumento da atividade enzimática da 6PGD, em deficientes de G6PD, seja decorrente da presença de um número aumentado de reticulócitos na corrente circulatória, faixa etária ou alterações eritrocitométricas que denotem anemia. O mais provável é que a hemólise autolimitada, imposta pelos processos oxidativos, preserve os eritrócitos mais jovens, que possuem atividade enzimática mais elevada, uma vez que naturalmente ocorre diminuição da atividade destas enzimas com o envelhecimento celular.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The parabrachial complex (PB) is an area of the brainstem responsible for the processing and transmission of essential physiologic information for the survival of the organisms. This region is subdivided in approximately nine subregions, considering morphology, cytoarchitectural and functional characteristic. Its neurons have an extensive network of connections with other regions of the nervous system. The objective in this work was to map the retinal projection to the PB and make a citoarchitectonic and neurochemical characterization of this region in the common marmoset (Callithrix jacchus), a primate of the New World. The retinal projections were mapped by anterograde transport of the choleric toxin subunit b (CTb). The citoarchitecture was described through the Nissl method, and the neurochemical characterization was made through immunohistochemical technique to the some neurotransmitters and neuroactives substances present in this neural center. In marmoset PB, in the coronal sections labeled by Nissl method, we found a similar pattern to that evidenced in other animal species. The immunoreactivity against CTb was verified in the PBMv in fibers/terminal, characterizing such as retinal innervations in this area. The immunohistochemical technique reveled that the PB contain cells, fibers and/or terminals immunoreactives to the neuronal nuclear protein, Choline acetyl transferase, nitric oxide synthase, serotonin, enkephalin, substance P, Calcium-binding proteins (calbindin, calretinin e parvalbumin), and glial fibrillary acidic protein. The histochemical technique reveled cells and fibers NADPH-diaphorase reactive. Each one of those substances presented a characteristic pattern of demarcation in PB, and some serve as specific markers of subregions