920 resultados para N-terminally blocked peptides
Resumo:
Maximakinin is an N-terminally extended bradykinin (DLPKINRKGPRPPGFSPFR) from the venom of a Chinese toad (Bombina maxima) that displays highly selective activity at mammalian arterial smooth muscle receptors. In this study, we report that incubation of maximakinin with either kallikrein or human saliva generates catabolites with enhanced bioactivity that retain the tissue selective effects of the parent molecule. In addition, we have observed that kallikrein rapidly cleaves the C-terminal arginyl residue of both maximakinin and bradykinin – a cleavage hitherto considered to be performed by a carboxypeptidase that facilitates selective bradykinin receptor targeting. Maximakinin has thus evolved as a `smart' defensive weapon in the toad with inherent resistance to the signal-terminating protease hardware in the potential predator. Thus, natural selection of amphibian skin peptides for antipredator defence, through interspecies delivery by an exogenous secretory mode, produces subtle structural stabilization modifications that can potentially provide new insights for the design of orally active and selectively targeted peptide therapeutics.
Resumo:
Structural homologues of vertebrate regulatory peptides found in defensive skin secretions of anuran amphibians often display enhanced bioactivity and receptor binding when compared with endogenous mammalian peptide ligands. Maximakinin, a novel N-terminally extended bradykinin (DLPKINRKGPRPPGFSPFR) from the skin venom of a Chinese toad (Bombina maxima), displays such activity enhancement when compared with bradykinin but is additionally highly selective for mammalian arterial smooth muscle bradykinin receptors displaying a 50-fold increase in molar potency in this smooth muscle type. In contrast, a 100-fold decrease in molar potency was observed at bradykinin receptors in intestinal and uterine smooth muscle preparations. Maximakinin has thus evolved as a “smart” defensive weapon in the toad with receptor/tissue selective targeting. Natural selection of amphibian skin venom peptides for antipredator defence, through inter-species delivery by an exogenous secretory mode, produces subtle structural stabilisation modifications that can potentially provide new insights for the design of selectively targeted peptide therapeutics.
Resumo:
Previous peptidomic analyses of the defensive skin secretion from the North American pickerel frog, Rana palustris, have established the presence of canonical bradykinin and multiple bradykinin-related peptides (BRPs). As a consequence of the multiplicity of peptides identified and their diverse primary structures, it was speculated that they must represent the products of expression of multiple genes. Here, we present unequivocal evidence that the majority of BRPs (11/13) identified in skin secretion by the peptidomic approach can be generated by differential site-specific protease cleavage from a single common precursor of 321 amino acid residues, named skin kininogen 1, whose primary structure was deduced from cloned skin secretion-derived cDNA. The organization of skin kininogen 1 consists of a hydrophobic signal peptide followed by eight non-identical domains each encoding a single copy of either canonical bradykinin or a BRP. Two additional splice variants, encoding precursors of 233 (skin kininogen 2) or 189 amino acid residues (skin kininogen 3), were also cloned and were found to lack BRP-encoding domains 5 and 6 or 4, 5 and 6, respectively. Thus, generation of peptidome diversity in amphibian defensive skin secretions can be achieved in part by differential protease cleavage of relatively large and multiple-encoding domain precursors reflecting a high degree of transcriptional economy.
Resumo:
Bradykinins and related peptides (BRPs) occur in the defensive skin secretions of many amphibians. Here we report the structures of BRPs and their corresponding biosynthetic precursor cDNAs from the Chinese brown frog, Rana chensinensis, and the North American leopard frog, Lithobates pipiens. R. chensinensis skin contained four transcripts each encoding a different kininogen whose organizations and spectrum of encoded BRPs were similar to those reported for the pickerel frog, Lithobates palustris. In contrast, from L. pipiens, a single skin kininogen was cloned whose structural organization and spectrum of mature BRPs were similar to those reported for the Chinese piebald odorous frog, Huia schmackeri. These data also implied that the endogenous precursor processing proteases in each species pair have identical site-directed specificities, which in part may be dictated by the primary structures of encoded BRPs. Thus the spectra of skin BRPs and the organization of their biosynthetic precursors are not consistent with recent taxonomy. The natural selective pressures that mould the primary structures of amphibian skin secretion peptides are thought to be related to the spectrum of predators encountered within their habitats. Thus similarities and differences in skin bradykinins may be reflective of predator spectra rather than indicative of species relatedness.
Resumo:
The skin secretion of the North American pickerel frog (Rana palustris) has long been known to have pronounced noxious/toxic properties and to be highly effective in defence against predators and against other sympatric amphibians. As it consists largely of a complex mixture of peptides, it has been subjected to systematic peptidomic study but there has been little focus on molecular cloning of peptide-encoding cDNAs and by deduction, the biosynthetic precursors that they encode. Here, we demonstrate that the cDNAs encoding the five major structural families of antimicrobial peptides can be elucidated by a single step “shotgun” cloning approach using a cDNA library constructed from the source material of the peptidomic studies—the defensive skin secretion itself. Using a degenerate primer pool designed to a highly conserved nucleic acid sequence 5' to the initiation codon of known antimicrobial peptide precursor transcripts, we amplified cDNA sequences representing five major classes of antimicrobial peptides, such as esculentins, brevinins, ranatuerins, palustrins and temporins. Bioinformatic comparisons of precursor open-reading frames and nucleic acid sequences revealed high degrees of structural similarities between analogous peptides of R. palustris and the Chinese bamboo odorous frog, Rana versabilis. This approach thus constitutes a robust technique that can be used either alone or ideally, in parallel with peptidomic analysis of skin secretion, to rapidly extract primary structural information on amphibian skin secretion peptides and their biosynthetic precursors.
Resumo:
The Chinese bamboo leaf odorous frog (Rana (Odorrana) versabilis) and the North American pickerel frog (Rana palustris) occupy different ecological niches on two different continents with no overlap in geographical distribution. R. palustris skin secretions contain a formidable array of antimicrobial peptides including homologs of brevinin-1, esculentin-1, esculentin-2, ranatuerin-2, a temporin and a family of peptides considered of unique structural attributes when isolated, palustrins 1–3. Here we describe the structures of mature peptides and precursors of eight putative antimicrobial peptides from the skin secretion of the Chinese bamboo leaf odorous frog (Rana (Odorrana) versabilis). Each peptide represents a structural homolog of respective peptide families isolated from R. palustris, including two peptides identical in primary structure to palustrin 1c and palustrin 3b. Additionally, two peptides were found to be structural homologs of ranatuerin 2B and ranatuerin 2P from the closely-related North American species, Rana berlandieri (the Rio Grande leopard frog) and Rana pipiens (the Northern leopard frog), respectively. Both palustrins and ranatuerins have hitherto been considered unique to North American ranid frogs. The use of primary structures of amphibian skin antimicrobial peptides is thus questionable as a taxonomic device or alternatively, the micro-evolution and/or ancestry of ranid frogs is more highly complex than previously thought.
Resumo:
Multiple bradykinin-related peptides including a novel bradykinin structural variant, (Val1)-bradykinin, have been identified from the defensive skin secretion of Guenther's frog, Hylarana guentheri by a tandem mass spectrometry method. Subsequently, four different preprobradykinin cDNAs, which encoded multiple bradykinin copies and its structural variants, were consistently cloned from a skin derived cDNA library. These preprobradykinin cDNAs showed little structural similarity with mammalian kininogens and the kininogens from the skin of toads, but have regions that are highly conserved in the kininogens from another ranid frog, Odorrana schmackeri. Alignment of these preprobradykinins revealed that preprobradykinin 1, 2 and 3 may derive from a single gene by alternative exon splicing.