990 resultados para Mulungu. Recombinant inhibitor. Anticoagulant. Microbicide activity. Proinflammatory activity
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Galectin-1 (Gal-1), the prototype of a family of β -galactoside-binding proteins, has been shown to attenuate experimental acute and chronic inflammation. In view of the fact that endothelial cells (ECs), but not human polymorphonuclear leukocytes (PMNs), expressed Gal-1 we tested here the hypothesis that the protein could modulate leukocyte-EC interaction in inflammatory settings. In vitro, human recombinant (hr) Gal-1 inhibited PMN chemotaxis and trans-endothelial migration. These actions were specific as they were absent if Gal-1 was boiled or blocked by neutralizing antiserum. In vivo, hrGal-1 (optimum effect at 0.3 μg equivalent to 20 pmol) inhibited interleukin-1β-induced PMN recruitment into the mouse peritoneal cavity. Intravital microscopy analysis showed that leukocyte flux, but not their rolling velocity, was decreased by an anti-inflammatory dose of hrGal-1. Binding of biotinylated Gal-1 to resting and post-adherent human PMNs occurred at concentrations inhibitory in the chemotaxis and transmigration assays. In addition, the pattern of Gal-1 binding was differentially modulated by PMN or EC activation. In conclusion, these data suggest the existence of a previously unrecognized function of Gal-1, that is inhibition of leukocyte rolling and extravasation in experimental inflammation. It is possible that endogenous Gal-1 may be part of a novel anti-inflammatory loop in which the endothelium is the source of the protein and the migrating PMNs the target for its anti-inflammatory action.
Antioxidant Effect of Melatonin on the Functional Activity of Colostral Phagocytes in Diabetic Women
Resumo:
Melatonin is involved in a number of physiological and oxidative processes, including functional regulation in human milk. The present study investigated the mechanisms of action of melatonin and its effects on the functional activity of colostral phagocytes in diabetic women. Colostrum samples were collected from normoglycemic (N = 38) and diabetic (N = 38) women. We determined melatonin concentration, superoxide release, bactericidal activity and intracellular Ca2+ release by colostral phagocytes treated or not with 8-(Diethylamino) octyl-3,4,5-trimethoxybenzoate hydrochloride (TMB-8) and incubated with melatonin and its precursor (N-acetyl-serotonin-NAS), antagonist (luzindole) and agonist (chloromelatonin-CMLT). Melatonin concentration was higher in colostrum samples from hyperglycemic than normoglycemic mothers. Melatonin stimulated superoxide release by colostral phagocytes from normoglycemic but not hyperglycemic women. NAS increased superoxide, irrespective of glycemic status, whereas CMTL increased superoxide only in cells from the normoglycemic group. Phagocytic activity in colostrum increased significantly in the presence of melatonin, NAS and CMLT, irrespective of glycemic status. The bactericidal activity of colostral phagocytes against enterophatogenic Escherichia coli (EPEC) increased in the presence of melatonin or NAS in the normoglycemic group, but not in the hyperglycemic group. Luzindole blocked melatonin action on colostrum phagocytes. Phagocytes from the normoglycemic group treated with melatonin exhibited an increase in intracellular Ca2+ release. Phagocytes treated with TMB-8 (intracellular Ca2+ inhibitor) decreased superoxide, bactericidal activity and intracellular Ca2+ release in both groups. The results obtained suggest an interactive effect of glucose metabolism and melatonin on colostral phagocytes. In colostral phagocytes from normoglycemic mothers, melatonin likely increases the ability of colostrum to protect against EPEC and other infections. In diabetic mothers, because maternal hyperglycemia modifies the functional activity of colostrum phagocytes, melatonin effects are likely limited to anti-inflammatory processes, with low superoxide release and bactericidal activity. © 2013 Morceli et al.
Resumo:
Objective: To evaluate levels of proinflammatory cytokines and sialidase activity in aerobic vaginitis (AV) in relation to normal vaginal flora and bacterial vaginosis (BV). Study design: In this cross-sectional study, a total of 682 consecutive non-pregnant women attending the gynecology service were assessed and 408 women were included. Vaginal rinsing samples were collected from 223 women with microscopic finding of BV (n = 98), aerobic vaginitis (n = 25) and normal flora (n = 100). Samples were tested for interleukin (IL)-1β, IL-6, IL-8, tumor necrosis factor (TNF)-α, and sialidase activity. Results: Compared to women with normal flora, vaginal levels of IL-1β were highly increased in both BV and AV (p < 0.0001). Significantly higher vaginal IL-6 was detected in AV (p < 0.0001) but not in BV, in relation to normal flora. Women with AV also presented increased IL-8 levels (p < 0.001), while those with BV presented levels similar to normal flora. Sialidase was increased in BV and AV compared with the normal group (p < 0.0001) but no difference in sialidase activity was observed between BV and AV. Conclusion: A more intense inflammatory host response occurs for AV than for BV when compared with normal flora. Furthermore, the increased sialidase activity in AV and BV indicates that both abnormal vaginal flora types can be harmful to the maintenance of a healthy vaginal environment. © 2012 Elsevier B.V.
Resumo:
Background: Brown propolis is the major type of propolis found in Cuba; its principal component is nemorosone, the major constituent of Clusia rosea floral resins. Nemorosone has received increasing attention due to its strong in vitro anti-cancer action. The citotoxicity of nemorosone in several human cancer cell lines has been reported and correlated to the direct action it has on the estrogen receptor (ER). Breast cancer can be treated with agents that target estrogen-mediated signaling, such as antiestrogens. Phytoestrogen can mimic or modulate the actions of endogenous estrogens and the treatment of breast cancer with phytoestrogens may be a valid strategy, since they have shown anti-cancer activity.Methods: The aim of the present investigation was to assess the capacity of nemorosone to interact with ERs, by Recombinant Yeast Assay (RYA) and E-screen assays, and to determine by comet assay, if the compound causes DNA-damaging in tumoral and non-tumoral breast cells.Results: Nemorosone did not present estrogenic activity, however, it inhibited the 17-β-estradiol (E2) action when either of both methods was used, showing their antiestrogenicity. The DNA damage induced by the benzophenone in cancer and normal breast cells presented negative results.Conclusion: These findings suggest that nemorosone may have therapeutic application in the treatment of breast cancer. © 2013 Camargo et al.; licensee BioMed Central Ltd.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The present study reports, for the first time, that the recombinant hsp65 from Mycobacterium leprae (chaperonin 2) displays a proteolytic activity toward oligopeptides. The M. leprae hsp65 proteolytic activity revealed a trypsin-like specificity toward quenched fluorescence peptides derived from dynorphins. When other peptide substrates were used (β-endorphin, neurotensin, and angiotensin I), the predominant peptide bond cleavages also involved basic amino acids in P 1, although, to a minor extent, the hydrolysis involving hydrophobic and neutral amino acids (G and F) was also observed. The amino acid sequence alignment of the M. leprae hsp65 with Escherichia coli Hs1VU protease suggested two putative threonine catalytic groups, one in the N-domain (T 136, K 168, and Y 264) and the other in the C-domain (T 375, K 409, and S 502). Mutagenesis studies showed that the replacement of K 409 by A caused a complete loss of the proteolytic activity, whereas the mutation of K 168 to A resulted in a 25% loss. These results strongly suggest that the amino acid residues T 375, K 409, and S 502 at the C-domain form the catalytic group that carries out the main proteolytic activity of the M. leprae hsp65. The possible pathophysiological implications of the proteolytic activity of the M. leprae hsp65 are now under investigation in our laboratory.
Resumo:
Due to its elevated cellulolytic activity, the filamentous fungus Trichoderma harzianum (T. harzianum) has considerable potential in biomass hydrolysis application. Cellulases from Trichoderma reesei have been widely used in studies of cellulose breakdown. However, cellulases from T. harzianum are less-studied enzymes that have not been characterized biophysically and biochemically as yet. Here, we examined the effects of pH and temperature on the secondary and tertiary structures, compactness, and enzymatic activity of cellobiohydrolase Cel7A from T. harzianum (Th Cel7A) using a number of biophysical and biochemical techniques. Our results show that pH and temperature perturbations affect Th Cel7A stability by two different mechanisms. Variations in pH modify protonation of the enzyme residues, directly affecting its activity, while leading to structural destabilization only at extreme pH limits. Temperature, on the other hand, has direct influence on mobility, fold, and compactness of the enzyme, causing unfolding of Th Cel7A just above the optimum temperature limit. Finally, we demonstrated that incubation with cellobiose, the product of the reaction and a competitive inhibitor, significantly increased the thermal stability of Th Cel7A. Our studies might provide insights into understanding, at a molecular level, the interplay between structure and activity of Th Cel7A at different pH and temperature conditions.
Resumo:
Trypanosoma rangeli is the trypanosomatid that colonizes the salivary gland of its insect vector, with a profound impact on the feeding capacity of the insect. In this study we investigated the role of the phosphotyrosine (P-Tyr) ecto-phosphatase activity of T. rangeli in its interaction with Rhodnius prolixus salivary glands. Long but not short epimastigotes adhered to the gland cells and the strength of interaction correlated with the enzyme activity levels in different strains. Differential interference contrast microscopy demonstrated that clusters of parasites are formed in most cases, suggesting cooperative interaction in the adhesion process. The tightness of the correlation was evidenced by modulating the P-Tyr ecto-phosphatase activity with various concentrations of inhibitors. Sodium orthovanadate, ammonium molybdate and zinc chloride decreased the interaction between T. rangeli and R. prolixus salivary glands in parallel. Levamisole, an inhibitor of alkaline phosphatases, affected neither process. EDTA strongly inhibited adhesion and P-Tyr ecto-phosphatase activity to the same extent, an effect that was no longer seen if the parasites were pre-incubated with the chelator and then washed. When the P-Tyr ecto-phosphatase of living T. ranged epimastigotes was irreversibly inactivated with sodium orthovanadate and the parasite cells were then injected into the insect thorax, colonization of the salivary glands was greatly depressed for several days after blood feeding. Addition of P-Tyr ecto-phosphatase substrates such as p-nitrophenyl phosphate (pNPP) and P-Tyr inhibited the adhesion of T. rangeli to salivary glands, but P-Ser, P-Thr and beta-glycerophosphate were completely ineffective. Immunoassays using anti-P-Tyr-residues revealed a large number of P-Tyr-proteins in extracts of R. prolixus salivary glands, which could be potentially targeted by T. rangeli during adhesion. These results indicate that dephosphorylation of structural P-Tyr residues on the gland cell surfaces, mediated by a P-Tyr ecto-phosphatase of the parasite, is a key event in the interaction between T. rangeli and R. prolixus salivary glands. (C) 2012 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Previous studies have shown that heparin induces vascular relaxation via integrin-dependent nitric oxide (NO)-mediated activation of the muscarinic receptor. The aim of this study was to identify the structural features of heparin that are necessary for the induction of vasodilatation. To address this issue, we tested heparin from various sources for their vasodilatation activities in the rat aorta ring. Structural and chemical characteristics of heparin, such as its molecular weight and substitution pattern, did not show a direct correlation with the vasodilation activity. Principal component analysis (PCA) of circular dichroism (CD), 1H-nuclear magnetic resonance (NMR) and vasodilation activity measurements confirmed that there is no direct relationship between the physico-chemical nature and vasodilation activity of the tested heparin samples. To further understand these observations, unfractionated heparin (UFH) from bovine intestinal mucosa, which showed the highest relaxation effect, was chemically modified. Interestingly, non-specific O- and N-desulfation of heparin reduced its anticoagulant, antithrombotic, and antihemostatic activities, but had no effect on its ability to induce vasodilation. On the other hand, chemical reduction of the carboxyl groups abolished heparin-induced vasodilation and reduced the affinity of heparin toward the extracellular matrix (ECM). In addition, dextran and dextran sulfate (linear non-sulfated and highly sulfated polysaccharides, respectively) did not induce significant relaxation, showing that the vasodilation activity of polysaccharides is neither charge-dependent nor backbone unspecific. Our results suggest that desulfated heparin molecules may be used as vasoactive agents due to their low side effects. J. Cell. Biochem. 113: 13591367, 2012. (c) 2011 Wiley Periodicals, Inc.
Resumo:
Ferreira-Junior NC, Fedoce AG, Alves FHF, Correa FMA, Resstel LBM. Medial prefrontal cortex endocannabinoid system modulates baroreflex activity through CB1 receptors. Am J Physiol Regul Integr Comp Physiol 302: R876-R885, 2012. First published December 28, 2011; doi: 10.1152/ajpregu.00330.2011.-Neural reflex mechanisms, such as the baroreflex, are involved in the regulation of cardiovascular system activity. Previous results from our group (Resstel LB, Correa FM. Medial prefrontal cortex NMDA receptors and nitric oxide modulate the parasympathetic component of the baroreflex. Eur J Neurosci 23: 481-488, 2006) have shown that glutamatergic synapses in the ventral portion of the medial prefrontal cortex (vMPFC) modulate baroreflex activity. Moreover, glutamatergic neurotransmission in the vMPFC can be modulated by the endocannabinoids system (eCBs), particularly the endocannabinoid anandamide, through presynaptic CB1 receptor activation. Therefore, in the present study, we investigated eCBs receptors that are present in the vMPFC, and more specifically whether CB1 receptors modulate baroreflex activity. We found that bilateral microinjection of the CB1 receptor antagonist AM251 (100 or 300 pmol/200 nl) into the vMPFC increased baroreflex activity in unanesthetized rats. Moreover, bilateral microinjection of either the anandamide transporter inhibitor AM404 (100 pmol/200 nl) or the inhibitor of the enzyme fatty acid amide hydrolase that degrades anandamide, URB597 (100 pmol/200 nl), into the MPFC decreased baroreflex activity. Finally, pretreatment of the vMPFC with an ineffective dose of AM251 (10 pmol/200 nl) was able to block baroreflex effects of both AM404 and URB597. Taken together, our results support the view that the eCBs in the vMPFC is involved in the modulation of baroreflex activity through the activation of CB1 receptors, which modulate local glutamate release.