963 resultados para Multiresolution shape analysis


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The research work reported in this Thesis was held along two main lines of research. The first and main line of research is about the synthesis of heteroaromatic compounds with increasing steric hindrance, with the aim of preparing stable atropisomers. The main tools used for the study of these dynamic systems, as described in the Introduction, are DNMR, coupled with line shape simulation and DFT calculations, aimed to the conformational analysis for the prediction of the geometries and energy barriers to the trasition states. This techniques have been applied to the research projects about: • atropisomers of arylmaleimides; • atropisomers of 4-arylpyrazolo[3,4-b]pyridines; • study of the intramolecular NO2/CO interaction in solution; • study on 2-arylpyridines. Parallel to the main project, in collaboration with other groups, the research line about determination of the absolute configuration was followed. The products, deriving form organocatalytic reactions, in many cases couldn’t be analyzed by means of X-Ray diffraction, making necessary the development of a protocol based on spectroscopic methodologies: NMR, circular dichroism and computational tools (DFT, TD-DFT) have been implemented in this scope. In this Thesis are reported the determination of the absolute configuration of: • substituted 1,2,3,4-tetrahydroquinolines; • compounds from enantioselective Friedel-Crafts alkylation-acetalization cascade of naphthols with α,β-unsaturated cyclic ketones; • substituted 3,4-annulated indoles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Protein-adsorption occurs immediately following implantation of biomaterials. It is unknown at which extent protein-adsorption impacts the cellular events at bone-implant interface. To investigate this question, we compared the in-vitro outcome of osteoblastic cells grown onto titanium substrates and glass as control, by modulating the exposure to serum-derived proteins. Substrates consisted of 1) polished titanium disks; 2) polished disks nanotextured with H2SO4/H2O2; 3) glass. In the pre-adsorption phase, substrates were treated for 1h with αMEM alone (M-noFBS) or supplemented with 10%-foetal-bovine-serum (M-FBS). MC3T3-osteoblastic-cells were cultured on the pre-treated substrates for 3h and 24h, in M-noFBS and M-FBS. Subsequently, the culture medium was replaced with M-FBS and cultures maintained for 3 and 7days. Cell-number was evaluated by: Alamar-Blue and MTT assay. Mitotic- and osteogenic-activities were evaluated through fluorescence-optical-microscope by immunolabeling for Ki-67 nuclear-protein and Osteopontin. Cellular morphology was evaluated by SEM-imaging. Data were statistically analyzed using ANOVA-test, (p<0.05). At day3 and day7, the presence or absence of serum-derived proteins during the pre-adsorption phase had not significant effect on cell-number. Only the absence of FBS during 24h of culture significantly affected cell-number (p<0.0001). Titanium surfaces performed better than glass, (p<0.01). The growth rate of cells between day3 and 7 was not affected by the initial absence of FBS. Immunolabeling for Ki-67 and Osteopontin showed that the mitotic- and osteogenic- activity were ongoing at 72h. SEM-analysis revealed that the absence of FBS had no major influence on cell-shape. • Physico-chemical interactions without mediation by proteins are sufficient to sustain the initial phase of culture and guide osteogenic-cells toward differentiation. • The challenge is avoiding adsorption of ‘undesirables’ molecules that negatively impact on the cueing cells receive from surface. This may not be a problem in healthy patients, but may have an important role in medically-compromised-individuals in whom the composition of tissue-fluids is altered.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mass estimation of galaxy clusters is a crucial point for modern cosmology, and can be obtained by several different techniques. In this work we discuss a new method to measure the mass of galaxy clusters connecting the gravitational potential of the cluster with the kinematical properties of its surroundings. We explore the dynamics of the structures located in the region outside virialized cluster, We identify groups of galaxies, as sheets or filaments, in the cluster outer region, and model how the cluster gravitational potential perturbs the motion of these structures from the Hubble fow. This identification is done in the redshift space where we look for overdensities with a filamentary shape. Then we use a radial mean velocity profile that has been found as a quite universal trend in simulations, and we fit the radial infall velocity profile of the overdensities found. The method has been tested on several cluster-size haloes from cosmological N-body simulations giving results in very good agreement with the true values of virial masses of the haloes and orientation of the sheets. We then applied the method to the Coma cluster and even in this case we found a good correspondence with previous. It is possible to notice a mass discrepancy between sheets with different alignments respect to the center of the cluster. This difference can be used to reproduce the shape of the cluster, and to demonstrate that the spherical symmetry is not always a valid assumption. In fact, if the cluster is not spherical, sheets oriented along different axes should feel a slightly different gravitational potential, and so give different masses as result of the analysis described before. Even this estimation has been tested on cosmological simulations and then applied to Coma, showing the actual non-sphericity of this cluster.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the last years the number of shoulder arthroplasties has been increasing. Simultaneously the study of their shape, size and strength and the reasons that bring to a possible early explantation have not yet been examined in detail. The research carried out directly on explants is practically nonexistent, this means a poor understanding of the mechanisms leading the patient and so the surgeon, to their removal. The analysis of the mechanisms which are the cause of instability, dislocation, broken, fracture, etc, may lead to a change in the structure or design of the shoulder prostheses and lengthen the life of the implant in situ. The idea was to analyze 22 explants through three methods in order to find roughness, corrosion and surface wear. In the first method, the humeral heads and/or the glenospheres were examined with the interferometer, a machine that through electromagnetic waves gives information about the roughness of the surfaces under examination. The output of the device was a total profile containing both roughness and information on the waves (representing the spatial waves most characteristic on the surface). The most important value is called "roughness average" and brings the average value of the peaks found in the local defects of the surfaces. It was found that 42% of the prostheses had considerable peak values in the area where the damage was caused by the implant and not only by external events, such as possibly the surgeon's hand. One of the problems of interest in the use of metallic biomaterials is their resistance to corrosion. The clinical significance of the degradation of metal implants has been the purpose of the second method; the interaction between human body and metal components is critical to understand how and why they arrive to corrosion. The percentage of damage in the joints of the prosthetic components has been calculated via high resolution photos and the software ImageJ. The 40% and 50% of the area appeared to have scratches or multiple lines due to mechanical artifacts. The third method of analysis has been made through the use of electron microscopy to quantify the wear surface in polyethylene components. Different joint movements correspond to different mechanisms of damage, which were imprinted in the parts of polyethylene examined. The most affected area was located mainly in the side edges. The results could help the manufacturers to modify the design of the prostheses and thus reduce the number of explants. It could also help surgeons in choosing the model of the prosthesis to be implanted in the patient.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this clinical trial was to determine the active tactile sensibility of natural teeth and to obtain a statistical analysis method fitting a psychometric function through the observed data points. On 68 complete dentulous test persons (34 males, 34 females, mean age 45.9 ± 16.1 years), one pair of healthy natural teeth each was tested: n = 24 anterior teeth and n = 44 posterior teeth. The computer-assisted, randomized measurement was done by having the subjects bite on thin copper foils of different thickness (5-200 µm) inserted between the teeth. The threshold of active tactile sensibility was defined by the 50% value of correct answers. Additionally, the gradient of the sensibility curve and the support area (90-10% value) as a description of the shape of the sensibility curve were calculated. For modeling the sensibility curve, symmetric and asymmetric functions were used. The mean sensibility threshold was 14.2 ± 12.1 µm. The older the subject, the higher the tactile threshold (r = 0.42, p = 0.0006). The support area was 41.8 ± 43.3 µm. The higher the 50% threshold, the smaller the gradient of the curve and the larger the support area. The curves showing the active tactile sensibility of natural teeth demonstrate a tendency towards asymmetry, so that the active tactile sensibility of natural teeth can mathematically best be described by using the asymmetric Weibull function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Seventeen bones (sixteen cadaveric bones and one plastic bone) were used to validate a method for reconstructing a surface model of the proximal femur from 2D X-ray radiographs and a statistical shape model that was constructed from thirty training surface models. Unlike previously introduced validation studies, where surface-based distance errors were used to evaluate the reconstruction accuracy, here we propose to use errors measured based on clinically relevant morphometric parameters. For this purpose, a program was developed to robustly extract those morphometric parameters from the thirty training surface models (training population), from the seventeen surface models reconstructed from X-ray radiographs, and from the seventeen ground truth surface models obtained either by a CT-scan reconstruction method or by a laser-scan reconstruction method. A statistical analysis was then performed to classify the seventeen test bones into two categories: normal cases and outliers. This classification step depends on the measured parameters of the particular test bone. In case all parameters of a test bone were covered by the training population's parameter ranges, this bone is classified as normal bone, otherwise as outlier bone. Our experimental results showed that statistically there was no significant difference between the morphometric parameters extracted from the reconstructed surface models of the normal cases and those extracted from the reconstructed surface models of the outliers. Therefore, our statistical shape model based reconstruction technique can be used to reconstruct not only the surface model of a normal bone but also that of an outlier bone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

George Gaylord Simpson famously postulated that much of life's diversity originated as adaptive radiations-more or less simultaneous divergences of numerous lines from a single ancestral adaptive type. However, identifying adaptive radiations has proven difficult due to a lack of broad-scale comparative datasets. Here, we use phylogenetic comparative data on body size and shape in a diversity of animal clades to test a key model of adaptive radiation, in which initially rapid morphological evolution is followed by relative stasis. We compared the fit of this model to both single selective peak and random walk models. We found little support for the early-burst model of adaptive radiation, whereas both other models, particularly that of selective peaks, were commonly supported. In addition, we found that the net rate of morphological evolution varied inversely with clade age. The youngest clades appear to evolve most rapidly because long-term change typically does not attain the amount of divergence predicted from rates measured over short time scales. Across our entire analysis, the dominant pattern was one of constraints shaping evolution continually through time rather than rapid evolution followed by stasis. We suggest that the classical model of adaptive radiation, where morphological evolution is initially rapid and slows through time, may be rare in comparative data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In many animals, sexual selection on male traits results from female mate choice decisions made during a sequence of courtship behaviors. We use a bower-building cichlid fish, Nyassachromis cf. microcephalus, to show how applying standard selection analysis to data on sequential female assessment provides new insights into sexual selection by mate choice. We first show that the cumulative selection differentials confirm previous results suggesting female choice favors males holding large volcano-shaped sand bowers. The sequential assessment analysis reveals these cumulative differentials are the result of selection acting on different bower dimensions during the courtship sequence; females choose to follow males courting from tall bowers, but choose to engage in premating circling with males holding bowers with large diameter platforms. The approach we present extends standard selection analysis by partitioning the variances of increasingly accurate estimates of male reproductive fitness and is applicable to systems in which sequential female assessment drives sexual selection on male traits.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

When it comes to helping to shape sustainable development, research is most useful when it bridges the science–implementation/management gap and when it brings development specialists and researchers into a dialogue (Hurni et al. 2004); can a peer-reviewed journal contribute to this aim? In the classical system for validation and dissemination of scientific knowledge, journals focus on knowledge exchange within the academic community and do not specifically address a ‘life-world audience’. Within a North-South context, another knowledge divide is added: the peer review process excludes a large proportion of scientists from the South from participating in the production of scientific knowledge (Karlsson et al. 2007). Mountain Research and Development (MRD) is a journal whose mission is based on an editorial strategy to build the bridge between research and development and ensure that authors from the global South have access to knowledge production, ultimately with a view to supporting sustainable development in mountains. In doing so, MRD faces a number of challenges that we would like to discuss with the td-net community, after having presented our experience and strategy as editors of this journal. MRD was launched in 1981 by mountain researchers who wanted mountains to be included in the 1992 Rio process. In the late 1990s, MRD realized that the journal needed to go beyond addressing only the scientific community. It therefore launched a new section addressing a broader audience in 2000, with the aim of disseminating insights into, and recommendations for, the implementation of sustainable development in mountains. In 2006, we conducted a survey among MRD’s authors, reviewers, and readers (Wymann et al. 2007): respondents confirmed that MRD had succeeded in bridging the gap between research and development. But we realized that MRD could become an even more efficient tool for sustainability if development knowledge were validated: in 2009, we began submitting ‘development’ papers (‘transformation knowledge’) to external peer review of a kind different from the scientific-only peer review (for ‘systems knowledge’). At the same time, the journal became open access in order to increase the permeability between science and society, and ensure greater access for readers and authors in the South. We are currently rethinking our review process for development papers, with a view to creating more space for communication between science and society, and enhancing the co-production of knowledge (Roux 2008). Hopefully, these efforts will also contribute to the urgent debate on the ‘publication culture’ needed in transdisciplinary research (Kueffer et al. 2007).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study investigates the mechanical implications of shell shape differences between males and females of two North American turtle species: Chrysemys picta and Glyptemys insculpta. These species show patterns of sexual dimorphism that are common to many species of turtle. Females have wider and more highly domed shells, whereas males tend to have flatter, more streamlined shells. In addition, the males of many terrestrial species have concave plastra, most likely to accommodate the domed shells of the females while mating. The purpose of this study was to determine whether the known morphological differences in male and female turtle shells are also associated with differences in shell strength. Landmark coordinate data were collected from the shells of males and females of both species. These data were used to create digital models of each shell for finite-element (FE) analysis. FE models were generated by transforming a single base model of a turtle shell to match the shapes of each specimen examined in this study. All models were assigned the same material properties and restraints. Twelve load cases, each representing a predator’s bite at a different location on the carapace, were applied separately to the models. Subsequently, Von Mises stresses were extracted for each element of each model. Overall, the shells of females of both species exhibited significantly lower maximum and average stresses for a given load than those of their male counterparts. Male G. insculpta exhibited significant increases in stresses because of the concave shape of their plastra. We suggest that the mechanical implications of shell shape differences between males and females may have a large impact on many aspects of the biology of these turtle species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Current methods to characterize mesenchymal stem cells (MSCs) are limited to CD marker expression, plastic adherence and their ability to differentiate into adipogenic, osteogenic and chondrogenic precursors. It seems evident that stem cells undergoing differentiation should differ in many aspects, such as morphology and possibly also behaviour; however, such a correlation has not yet been exploited for fate prediction of MSCs. Primary human MSCs from bone marrow were expanded and pelleted to form high-density cultures and were then randomly divided into four groups to differentiate into adipogenic, osteogenic chondrogenic and myogenic progenitor cells. The cells were expanded as heterogeneous and tracked with time-lapse microscopy to record cell shape, using phase-contrast microscopy. The cells were segmented using a custom-made image-processing pipeline. Seven morphological features were extracted for each of the segmented cells. Statistical analysis was performed on the seven-dimensional feature vectors, using a tree-like classification method. Differentiation of cells was monitored with key marker genes and histology. Cells in differentiation media were expressing the key genes for each of the three pathways after 21 days, i.e. adipogenic, osteogenic and chondrogenic, which was also confirmed by histological staining. Time-lapse microscopy data were obtained and contained new evidence that two cell shape features, eccentricity and filopodia (= 'fingers') are highly informative to classify myogenic differentiation from all others. However, no robust classifiers could be identified for the other cell differentiation paths. The results suggest that non-invasive automated time-lapse microscopy could potentially be used to predict the stem cell fate of hMSCs for clinical application, based on morphology for earlier time-points. The classification is challenged by cell density, proliferation and possible unknown donor-specific factors, which affect the performance of morphology-based approaches. Copyright © 2012 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a framework for statistical finite element analysis combining shape and material properties, and allowing performing statistical statements of biomechanical performance across a given population. In this paper, we focus on the design of orthopaedic implants that fit a maximum percentage of the target population, both in terms of geometry and biomechanical stability. CT scans of the bone under consideration are registered non-rigidly to obtain correspondences in position and intensity between them. A statistical model of shape and intensity (bone density) is computed by means of principal component analysis. Afterwards, finite element analysis (FEA) is performed to analyse the biomechanical performance of the bones. Realistic forces are applied on the bones and the resulting displacement and bone stress distribution are calculated. The mechanical behaviour of different PCA bone instances is compared.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An extrusion die is used to continuously produce parts with a constant cross section; such as sheets, pipes, tire components and more complex shapes such as window seals. The die is fed by a screw extruder when polymers are used. The extruder melts, mixes and pressures the material by the rotation of either a single or double screw. The polymer can then be continuously forced through the die producing a long part in the shape of the die outlet. The extruded section is then cut to the desired length. Generally, the primary target of a well designed die is to produce a uniform outlet velocity without excessively raising the pressure required to extrude the polymer through the die. Other properties such as temperature uniformity and residence time are also important but are not directly considered in this work. Designing dies for optimal outlet velocity variation using simple analytical equations are feasible for basic die geometries or simple channels. Due to the complexity of die geometry and of polymer material properties design of complex dies by analytical methods is difficult. For complex dies iterative methods must be used to optimize dies. An automated iterative method is desired for die optimization. To automate the design and optimization of an extrusion die two issues must be dealt with. The first is how to generate a new mesh for each iteration. In this work, this is approached by modifying a Parasolid file that describes a CAD part. This file is then used in a commercial meshing software. Skewing the initial mesh to produce a new geometry was also employed as a second option. The second issue is an optimization problem with the presence of noise stemming from variations in the mesh and cumulative truncation errors. In this work a simplex method and a modified trust region method were employed for automated optimization of die geometries. For the trust region a discreet derivative and a BFGS Hessian approximation were used. To deal with the noise in the function the trust region method was modified to automatically adjust the discreet derivative step size and the trust region based on changes in noise and function contour. Generally uniformity of velocity at exit of the extrusion die can be improved by increasing resistance across the die but this is limited by the pressure capabilities of the extruder. In optimization, a penalty factor that increases exponentially from the pressure limit is applied. This penalty can be applied in two different ways; the first only to the designs which exceed the pressure limit, the second to both designs above and below the pressure limit. Both of these methods were tested and compared in this work.