948 resultados para Multiplicity Vector
Resumo:
A new model of pattern recognition principles-Biomimetic Pattern Recognition, which is based on "matter cognition" instead of "matter classification", has been proposed. As a important means realizing Biomimetic Pattern Recognition, the mathematical model and analyzing method of ANN get breakthrough: a novel all-purpose mathematical model has been advanced, which can simulate all kinds of neuron architecture, including RBF and BP models. As the same time this model has been realized using hardware; the high-dimension space geometry method, a new means to analyzing ANN, has been researched.
Resumo:
200 GeV corresponding to baryon chemical potentials (mu(B)) between 200 and 20 MeV. Our measurements of the products kappa sigma(2) and S sigma, which can be related to theoretical calculations sensitive to baryon number susceptibilities and long-range correlations, are constant as functions of collision centrality. We compare these products with results from lattice QCD and various models without a critical point and study the root s(NN) dependence of kappa sigma(2). From the measurements at the three beam energies, we find no evidence for a critical point in the QCD phase diagram for mu(B) below 200 MeV.
Resumo:
The discrepancy between the PQCD calculation and the CLEO data for chi (c1)->gamma V (V=rho (0), omega, phi) stimulates our interest in exploring other mechanisms of chi (c1) decay. In this work, we apply an important non-perturbative QCD effect, i.e., the hadronic loop mechanism, to study chi (c1)->gamma V radiative decay. Our numerical result shows that the theoretical results including the hadronic loop contribution and the PQCD calculation of chi (c1)->gamma V are consistent with the corresponding CLEO data of chi (c1)->gamma V. We expect further experimental measurement of chi (c1)->gamma V, which will be helpful to test the hadronic loop effect on chi (c1) decay.
Resumo:
In this paper, we evaluated various parameters of culture condition affecting high-level soluble expression of human cyclin A, in Escherichia coli BL21(DE3), and demonstrated that the highest protein yield was obtained using TB(no glycerol) + 0.5% glucose medium at 25 degrees C. By single immobilized metal ion affinity chromatography, we got highly purified human cyclin A(2) with a yield ranged from 20 to 30 mg/L. By amyloid-diagnostic dye ThT binding and Fourier transform infrared spectroscopy, we observed a significant decrease in alpha-helix content and an increase in beta-sheet structure in cyclin A(2) inclusion body in comparison to its native protein, and confirmed the resemblance of the internal organization of cyclin A(2) inclusion body and amyloid fibrils.
Resumo:
The singlet-triplet splitting energy gap DeltaE(S.T) = E-S - E-T is calculated for the ortho-, meta-, and para-xylylenes and their heteroatomic analogous by means of AM1-CI approach. It is shown that when the radical centers R-.(R-.=H2C.-,H2N.+- or HN.-) are twisted sufficiently Tar out of conjugation with the benzene ring, DeltaE(S.T) tends to zero or is negative, i.e, ortho-, meta-, and para-phenylenes turn into weak ferromagnetic or antiferromagnetic coupling unit, while they are strong ferromagnetic (meta-isomers) or antiferromagnetic (ortho-, para-isomers) coupling units under planar conformation. It is suggested that serious twisted conformation is not recommended candidate for the design of novel high-spin molecules with stable high-spin ground states by ortho- or para-phenylene coupling unit.
Resumo:
In an attempt to explore the effects of structural multiplicity of polymers on the mechanism of radiation crosslinking, the adaptability of the Charlesby-Pinner's equation and its various modified versions are examined. It is recognized that both chemical
Resumo:
In an attempt to explore the effect of structural multiplicity of polymers on the mechanism of radiation crosslinking, the adaptability of the Charlesby-Pinner's equation and its various modified versions are examined. It is recognized that both chemical and morphological multiplicity of polymer structure results in the multiplicity of crosslinking mechanism, and that any single equation can only be applicable to a certain step of the whole radiation process.
Resumo:
Zebrafish has been generally considered as an excellent model in case of drug screening, disease model establishment, and vertebrate embryonic development study. In this work, the ability of human cytomegalovirus immediate early promoter (CMV promoter)-driven short hairpin RNA (shRNA) expression vector to induce shRNA against VEGF gene in zebrafish was tested, and its effect on vascular development was assed, too. Using RT-qPCR, blood vessel staining, and in situ hybridization, we confirmed certain transcriptional activity and down regulation of gene expression by the vector. In situ hybridization analysis indicated selective inhibition of NRP1 expression in the VEGF gene loss of function model, which might imply in turn that VEGF could not only activate endothelial cells directly but also could contribute to stimulating angiogenesis in vivo by a mechanism that involved up-regulation of its cognate receptor expression in zebrafish. This contributed to a better understanding of molecular mechanisms of cardiovascular development. The system improved the success rate in making inducible knockdown and widened the possibilities for better therapeutic targets in zebrafish.
Resumo:
The construction of the shuttle, expression vector of human tumor necrosis factor alpha (hTNF-alpha) gene and its expression in a cyanobacterium Anabaena sp. PCC 7120 was reported. The 700-bp hTNF cDNA fragments have been recovered from plasmid pRL-rhTNF, then inserted downstream of the promoter PpsbA in the plasmid pRL439. The resultant intermediary plasmid pRL-TC has further been combined with the shuttle vector pDC-8 to get the shuttle, expression vector pDC-TNF. The expression of the rhTNF gene in Escherichia coil has been analyzed by SDS-PAGE and thin-layer scanning, and the results show that the expressed TNF protein with these two vectors is 16.9 percent (pRL-TC) and 15.0 percent (pDC-TNF) of the total proteins in the cells, respectively, while the expression level of TNF gene in plasmid pRL-rhTNF is only 11.8 percent. Combined with the participation of the conjugal and helper plasmids, pDC-TNF has been introduced into Anabaena sg PCC 7120 by triparental conjugative transfer, and the stable transgenic strains have been obtained. The existence of the introduced plasmid pDC-TNF in recombinant cyanobacterial cells has been demonstrated by the results of the agarose electrophoresis with the extracted plasmid samples and Southern blotting with alpha-(32)p labeled hTNF cDNA probes, while the expression of the hTNF gene in Anabaena sp. PCC 7120 has been confirmed by the results of Western blotting with extracted protein samples and human TNF-alpha monoclonal antibodies. The cytotoxicity assays using the mouse cancer cell line L929 proved the cytotoxicity of the TNF in the crude extracts from the transgenic cyanobacterium Anabaena sp. PCC 7120.
Resumo:
An efficient conjugation method has been developed for the marine Actinomyces sp. isolate M048 to facilitate the genetic manipulation of the chandrananimycin biosynthesis gene cluster. A phi C31-derived integration vector pIJ8600 containing oriT and attP fragments was introduced into strain M048 by bi-parental conjugation from Escherichia coli ET12567 to strain M048. Transformation efficiency was (6.38 +/- 0.41) x 10(-5) exconjugants per recipient spore. Analysis of eight exconjugants showed that the plasmid pIJ8600 was stably integrated at a single chromosomal site (attB) of the Actinomyces genome. The DNA sequence of the attB was cloned and shown to be conserved. The results of antimicrobial activity analysis indicated that the insertion of plasmid pIJ8600 seemed to affect the biosynthesis of antibiotics that could strongly inhibit the growth of E. coli and Mucor miehei (Tu284). HPLC-MS analysis of the extracts indicated that disruption of the attB site resulted in the complete abolition of chandrananimycin A-C production, proving the identity of the gene cluster. Instead of chandrananimycins, two bafilomycins were produced through disruption of the attB site from the chromosomal DNA of marine Actinomyces sp. M048.