885 resultados para Multiple Instance Dictionary Learning
Resumo:
Interactions in mobile devices normally happen in an explicit manner, which means that they are initiated by the users. Yet, users are typically unaware that they also interact implicitly with their devices. For instance, our hand pose changes naturally when we type text messages. Whilst the touchscreen captures finger touches, hand movements during this interaction however are unused. If this implicit hand movement is observed, it can be used as additional information to support or to enhance the users’ text entry experience. This thesis investigates how implicit sensing can be used to improve existing, standard interaction technique qualities. In particular, this thesis looks into enhancing front-of-device interaction through back-of-device and hand movement implicit sensing. We propose the investigation through machine learning techniques. We look into problems on how sensor data via implicit sensing can be used to predict a certain aspect of an interaction. For instance, one of the questions that this thesis attempts to answer is whether hand movement during a touch targeting task correlates with the touch position. This is a complex relationship to understand but can be best explained through machine learning. Using machine learning as a tool, such correlation can be measured, quantified, understood and used to make predictions on future touch position. Furthermore, this thesis also evaluates the predictive power of the sensor data. We show this through a number of studies. In Chapter 5 we show that probabilistic modelling of sensor inputs and recorded touch locations can be used to predict the general area of future touches on touchscreen. In Chapter 7, using SVM classifiers, we show that data from implicit sensing from general mobile interactions is user-specific. This can be used to identify users implicitly. In Chapter 6, we also show that touch interaction errors can be detected from sensor data. In our experiment, we show that there are sufficient distinguishable patterns between normal interaction signals and signals that are strongly correlated with interaction error. In all studies, we show that performance gain can be achieved by combining sensor inputs.
Resumo:
Este trabajo se inscribe en uno de los grandes campos de los estudios organizacionales: la estrategia. La perspectiva clásica en este campo promovió la idea de que proyectarse hacia el futuro implica diseñar un plan (una serie de acciones deliberadas). Avances posteriores mostraron que la estrategia podía ser comprendida de otras formas. Sin embargo, la evolución del campo privilegió en alguna medida la mirada clásica estableciendo, por ejemplo, múltiples modelos para ‘formular’ una estrategia, pero dejando en segundo lugar la manera en la que esta puede ‘emerger’. El propósito de esta investigación es, entonces, aportar al actual nivel de comprensión respecto a las estrategias emergentes en las organizaciones. Para hacerlo, se consideró un concepto opuesto —aunque complementario— al de ‘planeación’ y, de hecho, muy cercano en su naturaleza a ese tipo de estrategias: la improvisación. Dado que este se ha nutrido de valiosos aportes del mundo de la música, se acudió al saber propio de este dominio, recurriendo al uso de ‘la metáfora’ como recurso teórico para entenderlo y alcanzar el objetivo propuesto. Los resultados muestran que 1) las estrategias deliberadas y las emergentes coexisten y se complementan, 2) la improvisación está siempre presente en el contexto organizacional, 3) existe una mayor intensidad de la improvisación en el ‘como’ de la estrategia que en el ‘qué’ y, en oposición a la idea convencional al respecto, 4) se requiere cierta preparación para poder improvisar de manera adecuada.
Resumo:
Whole Exome Sequencing (WES) is rapidly becoming the first-tier test in clinics, both thanks to its declining costs and the development of new platforms that help clinicians in the analysis and interpretation of SNV and InDels. However, we still know very little on how CNV detection could increase WES diagnostic yield. A plethora of exome CNV callers have been published over the years, all showing good performances towards specific CNV classes and sizes, suggesting that the combination of multiple tools is needed to obtain an overall good detection performance. Here we present TrainX, a ML-based method for calling heterozygous CNVs in WES data using EXCAVATOR2 Normalized Read Counts. We select males and females’ non pseudo-autosomal chromosome X alignments to construct our dataset and train our model, make predictions on autosomes target regions and use HMM to call CNVs. We compared TrainX against a set of CNV tools differing for the detection method (GATK4 gCNV, ExomeDepth, DECoN, CNVkit and EXCAVATOR2) and found that our algorithm outperformed them in terms of stability, as we identified both deletions and duplications with good scores (0.87 and 0.82 F1-scores respectively) and for sizes reaching the minimum resolution of 2 target regions. We also evaluated the method robustness using a set of WES and SNP array data (n=251), part of the Italian cohort of Epi25 collaborative, and were able to retrieve all clinical CNVs previously identified by the SNP array. TrainX showed good accuracy in detecting heterozygous CNVs of different sizes, making it a promising tool to use in a diagnostic setting.
Resumo:
The Three-Dimensional Single-Bin-Size Bin Packing Problem is one of the most studied problem in the Cutting & Packing category. From a strictly mathematical point of view, it consists of packing a finite set of strongly heterogeneous “small” boxes, called items, into a finite set of identical “large” rectangles, called bins, minimizing the unused volume and requiring that the items are packed without overlapping. The great interest is mainly due to the number of real-world applications in which it arises, such as pallet and container loading, cutting objects out of a piece of material and packaging design. Depending on these real-world applications, more objective functions and more practical constraints could be needed. After a brief discussion about the real-world applications of the problem and a exhaustive literature review, the design of a two-stage algorithm to solve the aforementioned problem is presented. The algorithm must be able to provide the spatial coordinates of the placed boxes vertices and also the optimal boxes input sequence, while guaranteeing geometric, stability, fragility constraints and a reduced computational time. Due to NP-hard complexity of this type of combinatorial problems, a fusion of metaheuristic and machine learning techniques is adopted. In particular, a hybrid genetic algorithm coupled with a feedforward neural network is used. In the first stage, a rich dataset is created starting from a set of real input instances provided by an industrial company and the feedforward neural network is trained on it. After its training, given a new input instance, the hybrid genetic algorithm is able to run using the neural network output as input parameter vector, providing as output the optimal solution. The effectiveness of the proposed works is confirmed via several experimental tests.
Resumo:
Reinforcement Learning (RL) provides a powerful framework to address sequential decision-making problems in which the transition dynamics is unknown or too complex to be represented. The RL approach is based on speculating what is the best decision to make given sample estimates obtained from previous interactions, a recipe that led to several breakthroughs in various domains, ranging from game playing to robotics. Despite their success, current RL methods hardly generalize from one task to another, and achieving the kind of generalization obtained through unsupervised pre-training in non-sequential problems seems unthinkable. Unsupervised RL has recently emerged as a way to improve generalization of RL methods. Just as its non-sequential counterpart, the unsupervised RL framework comprises two phases: An unsupervised pre-training phase, in which the agent interacts with the environment without external feedback, and a supervised fine-tuning phase, in which the agent aims to efficiently solve a task in the same environment by exploiting the knowledge acquired during pre-training. In this thesis, we study unsupervised RL via state entropy maximization, in which the agent makes use of the unsupervised interactions to pre-train a policy that maximizes the entropy of its induced state distribution. First, we provide a theoretical characterization of the learning problem by considering a convex RL formulation that subsumes state entropy maximization. Our analysis shows that maximizing the state entropy in finite trials is inherently harder than RL. Then, we study the state entropy maximization problem from an optimization perspective. Especially, we show that the primal formulation of the corresponding optimization problem can be (approximately) addressed through tractable linear programs. Finally, we provide the first practical methodologies for state entropy maximization in complex domains, both when the pre-training takes place in a single environment as well as multiple environments.
Resumo:
The Cherenkov Telescope Array (CTA) will be the next-generation ground-based observatory to study the universe in the very-high-energy domain. The observatory will rely on a Science Alert Generation (SAG) system to analyze the real-time data from the telescopes and generate science alerts. The SAG system will play a crucial role in the search and follow-up of transients from external alerts, enabling multi-wavelength and multi-messenger collaborations. It will maximize the potential for the detection of the rarest phenomena, such as gamma-ray bursts (GRBs), which are the science case for this study. This study presents an anomaly detection method based on deep learning for detecting gamma-ray burst events in real-time. The performance of the proposed method is evaluated and compared against the Li&Ma standard technique in two use cases of serendipitous discoveries and follow-up observations, using short exposure times. The method shows promising results in detecting GRBs and is flexible enough to allow real-time search for transient events on multiple time scales. The method does not assume background nor source models and doe not require a minimum number of photon counts to perform analysis, making it well-suited for real-time analysis. Future improvements involve further tests, relaxing some of the assumptions made in this study as well as post-trials correction of the detection significance. Moreover, the ability to detect other transient classes in different scenarios must be investigated for completeness. The system can be integrated within the SAG system of CTA and deployed on the onsite computing clusters. This would provide valuable insights into the method's performance in a real-world setting and be another valuable tool for discovering new transient events in real-time. Overall, this study makes a significant contribution to the field of astrophysics by demonstrating the effectiveness of deep learning-based anomaly detection techniques for real-time source detection in gamma-ray astronomy.
Resumo:
In medicine, innovation depends on a better knowledge of the human body mechanism, which represents a complex system of multi-scale constituents. Unraveling the complexity underneath diseases proves to be challenging. A deep understanding of the inner workings comes with dealing with many heterogeneous information. Exploring the molecular status and the organization of genes, proteins, metabolites provides insights on what is driving a disease, from aggressiveness to curability. Molecular constituents, however, are only the building blocks of the human body and cannot currently tell the whole story of diseases. This is why nowadays attention is growing towards the contemporary exploitation of multi-scale information. Holistic methods are then drawing interest to address the problem of integrating heterogeneous data. The heterogeneity may derive from the diversity across data types and from the diversity within diseases. Here, four studies conducted data integration using customly designed workflows that implement novel methods and views to tackle the heterogeneous characterization of diseases. The first study devoted to determine shared gene regulatory signatures for onco-hematology and it showed partial co-regulation across blood-related diseases. The second study focused on Acute Myeloid Leukemia and refined the unsupervised integration of genomic alterations, which turned out to better resemble clinical practice. In the third study, network integration for artherosclerosis demonstrated, as a proof of concept, the impact of network intelligibility when it comes to model heterogeneous data, which showed to accelerate the identification of new potential pharmaceutical targets. Lastly, the fourth study introduced a new method to integrate multiple data types in a unique latent heterogeneous-representation that facilitated the selection of important data types to predict the tumour stage of invasive ductal carcinoma. The results of these four studies laid the groundwork to ease the detection of new biomarkers ultimately beneficial to medical practice and to the ever-growing field of Personalized Medicine.
Resumo:
In order to estimate depth through supervised deep learning-based stereo methods, it is necessary to have access to precise ground truth depth data. While the gathering of precise labels is commonly tackled by deploying depth sensors, this is not always a viable solution. For instance, in many applications in the biomedical domain, the choice of sensors capable of sensing depth at small distances with high precision on difficult surfaces (that present non-Lambertian properties) is very limited. It is therefore necessary to find alternative techniques to gather ground truth data without having to rely on external sensors. In this thesis, two different approaches have been tested to produce supervision data for biomedical images. The first aims to obtain input stereo image pairs and disparities through simulation in a virtual environment, while the second relies on a non-learned disparity estimation algorithm in order to produce noisy disparities, which are then filtered by means of hand-crafted confidence measures to create noisy labels for a subset of pixels. Among the two, the second approach, which is referred in literature as proxy-labeling, has shown the best results and has even outperformed the non-learned disparity estimation algorithm used for supervision.
Resumo:
Sales prediction plays a huge role in modern business strategies. One of it's many use cases revolves around estimating the effects of promotions. While promotions generally have a positive effect on sales of the promoted product, they can also have a negative effect on those of other products. This phenomenon is calles sales cannibalisation. Sales cannibalisation can pose a big problem to sales forcasting algorithms. A lot of times, these algorithms focus on sales over time of a single product in a single store (a couple). This research focusses on using knowledge of a product across multiple different stores. To achieve this, we applied transfer learning on a neural model developed by Kantar Consulting to demo an approach to estimating the effect of cannibalisation. Our results show a performance increase of between 10 and 14 percent. This is a very good and desired result, and Kantar will use the approach when integrating this test method into their actual systems.
Resumo:
The cerebellum is an important site for cortical demyelination in multiple sclerosis, but the functional significance of this finding is not fully understood. To evaluate the clinical and cognitive impact of cerebellar grey-matter pathology in multiple sclerosis patients. Forty-two relapsing-remitting multiple sclerosis patients and 30 controls underwent clinical assessment including the Multiple Sclerosis Functional Composite, Expanded Disability Status Scale (EDSS) and cerebellar functional system (FS) score, and cognitive evaluation, including the Paced Auditory Serial Addition Test (PASAT) and the Symbol-Digit Modalities Test (SDMT). Magnetic resonance imaging was performed with a 3T scanner and variables of interest were: brain white-matter and cortical lesion load, cerebellar intracortical and leukocortical lesion volumes, and brain cortical and cerebellar white-matter and grey-matter volumes. After multivariate analysis high burden of cerebellar intracortical lesions was the only predictor for the EDSS (p<0.001), cerebellar FS (p = 0.002), arm function (p = 0.049), and for leg function (p<0.001). Patients with high burden of cerebellar leukocortical lesions had lower PASAT scores (p = 0.013), while patients with greater volumes of cerebellar intracortical lesions had worse SDMT scores (p = 0.015). Cerebellar grey-matter pathology is widely present and contributes to clinical dysfunction in relapsing-remitting multiple sclerosis patients, independently of brain grey-matter damage.
Resumo:
Desmoid tumor (DT) is a common manifestation of Gardner's Syndrome (GS), although it is a rare condition in the general population. DT in patients with GS is usually located in the abdominal wall and/or intra-abdominal cavity. We report a case of a 32 years-old female patient with familial adenomatous polyposis (FAP), who was already submitted to total colectomy and developed multiple DT, located in the abdominal wall and in the left breast. The patient underwent several surgical procedures, with a multidisciplinary team of surgeons. Wide surgical resections of the left breast and the abdominal wall tumors were performed in separate steps. Polypropylene mesh reconstruction and muscle flaps were needed to cover the defects of the thoracic and abdominal walls. After partial necrosis of the adipose-cutaneous flap in the abdomen that required a new skin graft, she had a satisfactory outcome with complete healing of the surgical incisions. DT is frequent in GS, however, breast localization is very rare, with few cases reported in the literature. Recurrence of DT is not negligible, even after a wide surgical resection. GS patients must be followed up closely, and clinical examination, associated with imaging studies, should be performed to detect any signs of tumor. DT represents one of the most significant causes of the morbidity and mortality that affects FAP patients following colectomy. In general, the surgical procedures to excise DT are highly complex, requiring a multidisciplinary team.
Resumo:
Sexual dysfunction (SD) affects up to 80% of multiple sclerosis (MS) patients and pelvic floor muscles (PFMs) play an important role in the sexual function of these patients. The objective of this paper is to evaluate the impact of a rehabilitation program to treat lower urinary tract symptoms on SD of women with MS. Thirty MS women were randomly allocated to one of three groups: pelvic floor muscle training (PFMT) with electromyographic (EMG) biofeedback and sham neuromuscular electrostimulation (NMES) (Group I), PFMT with EMG biofeedback and intravaginal NMES (Group II), and PFMT with EMG biofeedback and transcutaneous tibial nerve stimulation (TTNS) (Group III). Assessments, before and after the treatment, included: PFM function, PFM tone, flexibility of the vaginal opening and ability to relax the PFMs, and the Female Sexual Function Index (FSFI) questionnaire. After treatment, all groups showed improvements in all domains of the PERFECT scheme. PFM tone and flexibility of the vaginal opening was lower after the intervention only for Group II. All groups improved in arousal, lubrication, satisfaction and total score domains of the FSFI questionnaire. This study indicates that PFMT alone or in combination with intravaginal NMES or TTNS contributes to the improvement of SD.
Resumo:
346
Resumo:
Fingolimod is a new and efficient treatment for multiple sclerosis (MS). The drug administration requires special attention to the first dose, since cardiovascular adverse events can be observed during the initial six hours of fingolimod ingestion. The present study consisted of a review of cardiovascular data on 180 patients with MS receiving the first dose of fingolimod. The rate of bradycardia in these patients was higher than that observed in clinical trials with very strict inclusion criteria for patients. There were less than 10% of cases requiring special attention, but no fatal cases. All but one patient continued the treatment after this initial dose. This is the first report on real-life administration of fingolimod to Brazilian patients with MS, and one of the few studies with these characteristics in the world.
Resumo:
Palpable mass is a common complaint presented to the breast surgeon. It is very uncommon for patients to report breast mass associated with palpable masses in other superficial structures. When these masses are related to systemic granulomatous diseases, the diagnosis and initiation of specific therapy can be challenging. The purpose of this paper is to report a case initially assessed by the breast surgeon and ultimately diagnosed as granulomatous variant of T-cell lymphoma, and discuss the main systemic granulomatous diseases associated with palpable masses involving the breast.