412 resultados para Multibeam


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A stereo-video baited camera system (BotCam) has been developed as a fishery-independent tool to monitor and study deepwater fish species and their habitat. During testing, BotCam was deployed primarily in water depths between 100 and 300 m for an assessment of its use in monitoring and studying Hawaiian bottomfish species. Details of the video analyses and data from the pilot study with BotCam in Hawai`i are presented. Multibeam bathymetry and backscatter data were used to delineate bottomfish habitat strata, and a stratified random sampling design was used for BotCam deployment locations. Video data were analyzed to assess relative fish abundance and to measure f ish size composition. Results corroborate published depth ranges and zones of the target species, as well as their habitat preferences. The results indicate that BotCam is a promising tool for monitoring and studying demersal fish populations associated with deepwater habitats to a depth of 300 m, at mesohabitat scales. BotCam is a flexible, nonextractive, and economical means to better understand deepwater ecosystems and improve science-based ecosystem approaches to management.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Marine sportfishing in southern California is a huge industry with annual revenues totaling many billions of dollars. However, the stocks of lingcod and six rockfish species have been declared overfished by the Pacific Fisheries Management Council. As part of a multifaceted fisheries management plan, marine conservation areas, covering many million square nautical miles, have been mandated. To monitor the recovery of the rockfish stocks in these areas, scientists are faced with the following challenges: 1) multiple species of rockfish exist in these areas; 2) the species reside near or on the bottom at depths of 80 to 300 m; and 3) they are low in numerical density. To meet these challenges, multifrequency echosounders, multibeam sonar, and cameras mounted on remotely operated vehicles are frequently used (Reynolds et al., 2001). The accuracy and precision of these echosounder results are largely dependent upon the accuracy of the species classification and target strength estimation (MacLennan and Simmonds, 1992).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With the use of a baited stereo-video camera system, this study semiquantitatively defined the habitat associations of 4 species of Lutjanidae: Opakapaka (Pristipomoides filamentosus), Kalekale (P. sieboldii), Onaga (Etelis coruscans), and Ehu (E. carbunculus). Fish abundance and length data from 6 locations in the main Hawaiian Islands were evaluated for species-specific and size-specific differences between regions and habitat types. Multibeam bathymetry and backscatter were used to classify habitats into 4 types on the basis of substrate (hard or soft) and slope (high or low). Depth was a major influence on bottomfish distributions. Opakapaka occurred at depths shallower than the depths at which other species were observed, and this species showed an ontogenetic shift to deeper water with increasing size. Opakapaka and Ehu had an overall preference for hard substrate with low slope (hard-low), and Onaga was found over both hard-low and hard-high habitats. No significant habitat preferences were recorded for Kalekale. Opakapaka, Kalekale, and Onaga exhibited size-related shifts with habitat type. A move into hard-high environments with increasing size was evident for Opakapaka and Kalekale. Onaga was seen predominantly in hard-low habitats at smaller sizes and in either hard-low or hard-high at larger sizes. These ontogenetic habitat shifts could be driven by reproductive triggers because they roughly coincided with the length at sexual maturity of each species. However, further studies are required to determine causality. No ontogenetic shifts were seen for Ehu, but only a limited number of juveniles were observed. Regional variations in abundance and length were also found and could be related to fishing pressure or large-scale habitat features.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reef fish distributions are patchy in time and space with some coral reef habitats supporting higher densities (i.e., aggregations) of fish than others. Identifying and quantifying fish aggregations (particularly during spawning events) are often top priorities for coastal managers. However, the rapid mapping of these aggregations using conventional survey methods (e.g., non-technical SCUBA diving and remotely operated cameras) are limited by depth, visibility and time. Acoustic sensors (i.e., splitbeam and multibeam echosounders) are not constrained by these same limitations, and were used to concurrently map and quantify the location, density and size of reef fish along with seafloor structure in two, separate locations in the U.S. Virgin Islands. Reef fish aggregations were documented along the shelf edge, an ecologically important ecotone in the region. Fish were grouped into three classes according to body size, and relationships with the benthic seascape were modeled in one area using Boosted Regression Trees. These models were validated in a second area to test their predictive performance in locations where fish have not been mapped. Models predicting the density of large fish (≥29 cm) performed well (i.e., AUC = 0.77). Water depth and standard deviation of depth were the most influential predictors at two spatial scales (100 and 300 m). Models of small (≤11 cm) and medium (12–28 cm) fish performed poorly (i.e., AUC = 0.49 to 0.68) due to the high prevalence (45–79%) of smaller fish in both locations, and the unequal prevalence of smaller fish in the training and validation areas. Integrating acoustic sensors with spatial modeling offers a new and reliable approach to rapidly identify fish aggregations and to predict the density large fish in un-surveyed locations. This integrative approach will help coastal managers to prioritize sites, and focus their limited resources on areas that may be of higher conservation value.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

NOAA’s Center for Coastal Monitoring and Assessment’s Biogeography Branch has mapped and characterized large portions of the coral reef ecosystems inside the U.S. coastal and territorial waters, including the U.S. Caribbean. The complementary protocols used in these efforts have enabled scientists and managers to quantitatively compare different marine ecosystems in tropical U.S. waters. The Biogeography Branch used these same general protocols to generate three seamless habitat maps of the Bank/Shelf (i.e., from 0 ≤50 meters) and the Bank/Shelf Escarpment (i.e., from 50 ≤1,000 meters and from 1,000 ≤ 1,830 meters) inside Buck Island Reef National Monument (BIRNM). While this mapping effort marks the fourth time that the shallow-water habitats of BIRNM have been mapped, it is the first time habitats deeper than 30 meters (m) have been characterized. Consequently, this habitat map provides information on the distribution of mesophotic and deep-water coral reef ecosystems and serves as a spatial baseline for monitoring change in the Monument. A benthic habitat map was developed for approximately 74.3 square kilometers or 98% of the BIRNM using a combination of semi-automated and manual classification methods. The remaining 2% was not mapped due to lack of imagery in the western part of the Monument at depths ranging from 1,000 to 1,400 meters. Habitats were interpreted from orthophotographs, LiDAR (Light Detection and Ranging) imagery and four different types of MBES (Multibeam Echosounder) imagery. Three minimum mapping units (MMUs) (100, 1,000 and 5,000 square meters) were used because of the wide range of depths present in the Monument. The majority of the area that was characterized was deeper than 30 m on the Bank/Shelf Escarpment. This escarpment area was dominated by uncolonized sand which transitioned to mud as depth increased. Bedrock was exposed in some areas of the escarpment, where steep slopes prevented sediment deposition. Mesophotic corals were seen in the underwater video, but were too sparsely distributed to be reliably mapped from the source imagery. Habitats on the Bank/Shelf were much more variable than those seen on the Bank/Shelf Escarpment. The majority of this shelf area was comprised of coral reef and hardbottom habitat dominated by various forms of turf, fleshy, coralline or filamentous algae. Even though algae was the dominant biological cover type, nearly a quarter (24.3%) of the Monument’s Bank/Shelf benthos hosted a cover of 10%-<50% live coral. In total, 198 unique combinations of habitat classes describing the geography, geology and biology of the sea-floor were identified from the three types of imagery listed above. No thematic accuracy assessment was conducted for areas deeper than about 50 meters, most of which was located in the Bank/Shelf Escarpment. The thematic accuracy of classes in waters shallower than approximately 50 meters ranged from 81.4% to 94.4%. These thematic accuracies are similar to those reported for other NOAA benthic habitat mapping efforts in St. John (>80%), the Main Eight Hawaiian Islands (>84.0%) and the Republic of Palau (>80.0%). These digital maps products can be used with confidence by scientists and resource managers for a multitude of different applications, including structuring monitoring programs, supporting management decisions, and establishing and managing marine conservation areas. The final deliverables for this project, including the benthic habitat maps, source imagery and in situ field data, are available to the public on a NOAA Biogeography Branch website (http://ccma.nos.noaa.gov/ecosystems/coralreef/stcroix.aspx) and through an interactive, web-based map application (http://ccma.nos.noaa.gov/explorer/biomapper/biomapper.html?id=BUIS). This report documents the process and methods used to create the shallow to deep-water benthic habitat maps for BIRNM. Chapter 1 provides a short introduction to BIRNM, including its history, marine life and ongoing research activities. Chapter 2 describes the benthic habitat classification scheme used to partition the different habitats into ecologically relevant groups. Chapter 3 explains the steps required to create a benthic habitat map using a combination of semi-automated and visual classification techniques. Chapter 4 details the steps used in the accuracy assessment and reports on the thematic accuracy of the final shallow-water map. Chapter 5 summarizes the type and abundance of each habitat class found inside BIRNM, how these habitats compare to past habitat maps and outlines how these new habitat maps may be used to inform future management activities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

NOAA’s Coral Reef Conservation program (CRCP) develops coral reef management priorities by bringing together various partners to better understand threats to coral reef ecosystems with the goal of conserving, protecting and restoring these resources. Place-based and ecosystem-based management approaches employed by CRCP require that spatially explicit information about benthic habitats and fish utilization are available to characterize coral reef ecosystems and set conservation priorities. To accomplish this, seafloor habitat mapping of coral reefs around the U.S. Virgin Islands (USVI) and Puerto Rico has been ongoing since 2004. In 2008, fishery acoustics surveys were added to NOAA survey missions in the USVI and Puerto Rico to assess fish distribution and abundance in relation to benthic habitats in high priority conservation areas. NOAA’s National Centers for Coastal Ocean Science (NCCOS) have developed fisheries acoustics survey capabilities onboard the NOAA ship Nancy Foster to complement the CRCP seafloor habitat mapping effort spearheaded by the Center for Coastal Monitoring and Assessment Biogeography Branch (CCMA-BB). The integration of these activities has evolved on the Nancy Foster over the three years summarized in this report. A strategy for improved operations and products has emerged over that time. Not only has the concurrent operation of multibeam and fisheries acoustics surveys been beneficial in terms of optimizing ship time and resources, this joint effort has advanced an integrated approach to characterizing bottom and mid-water habitats and the fishes associated with them. CCMA conducts multibeam surveys to systematically map and characterize coral reef ecosystems, resulting in products such as high resolution bathymetric maps, backscatter information, and benthic habitat classification maps. These products focus on benthic features and live bottom habitats associated with them. NCCOS Centers (the Center for Coastal Fisheries and Habitat Research and the Center for Coastal Environmental Health and Biomolecular Research) characterize coral reef ecosystems by using fisheries acoustics methods to capture biological information through the entire water column. Spatially-explicit information on marine resources derived from fisheries acoustics surveys, such as maps of fish density, supports marine spatial planning strategies and decision making by providing a biological metric for evaluating coral reef ecosystems and assessing impacts from pollution, fishing pressure, and climate change. Data from fisheries acoustics surveys address management needs by providing a measure of biomass in management areas, detecting spatial and temporal responses in distribution relative to natural and anthropogenic impacts, and identifying hotspots that support high fish abundance or fish aggregations. Fisheries acoustics surveys conducted alongside multibeam mapping efforts inherently couple water column data with information on benthic habitats and provide information on the heterogeneity of both benthic habitats and biota in the water column. Building on this information serves to inform resource managers regarding how fishes are organized around habitat structure and the scale at which these relationships are important. Where resource managers require place-based assessments regarding the location of critical habitats along with high abundances of fish, concurrent multibeam and fisheries acoustics surveys serve as an important tool for characterizing and prioritizing coral reef ecosystems. This report summarizes the evolution of fisheries acoustics surveys onboard the NOAA ship Nancy Foster from 2008 to 2010, in conjunction with multibeam data collection, aimed at characterizing benthic and mid-water habitats in high priority conservation areas around the USVI and Puerto Rico. It also serves as a resource for the continued development of consistent data products derived from acoustic surveys. By focusing on the activities of 2010, this report highlights the progress made to date and illustrates the potential application of fisheries data derived from acoustic surveys to the management of coral reef ecosystems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Demersal groundfish densities were estimated by conducting a visual strip-transect survey via manned submersible on the continental shelf off Cape Flattery, Washington. The purpose of this study was to evaluate the statistical sampling power of the submersible survey as a tool to discriminate density differences between trawlable and untrawlable habitats. A geophysical map of the study area was prepared with side-scan sonar imagery, multibeam bathymetry data, and known locations of historical NMFS trawl survey events. Submersible transects were completed at randomly selected dive sites located in each habitat type. Significant differences in density between habitats were observed for lingcod (Ophiodon elongatus), yelloweye rockfish (Sebastes ruberrimus), and tiger rockfish (S. nigrocinctus) individually, and for “all rockfish” and “all flatfish” in the aggregate. Flatfish were more than ten times as abundant in the trawlable habitat samples than in the untrawlable samples, whereas rockfish as a group were over three times as abundant in the untrawlable habitat samples. Guidelines for sample sizes and implications for the estimation of the continental shelf trawl-survey habitat-bias are considered. We demonstrate an approach that can be used to establish sample size guidelines for future work by illustrating the interplay between statistical sampling power and 1) habitat specific-density differences, 2) variance of density differences, and 3) the proportion of untrawlable area in a habitat.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sabellaria spinulosa reefs are considered to be sensitive and of high conservation status. This article evaluates the feasibility of using remote sensing technology to delineate S. spinulosa reefs. S. spinulosa reef habitats associated with the Thanet Offshore Windfarm site were mapped using high resolution sidescan sonar (410 kHz) and multibeam echo sounder (<1 m2) data in 2005 (baseline), 2007 (pre-construction baseline) and 2012 (post-construction). The S. spinulosa reefs were identified in the acoustic data as areas of distinct irregular texturing. Maps created using acoustic data were validated using quantitative measures of reef quality, namely tube density (as a proxy for the density of live S. spinulosa), percentage cover of S. spinulosa structures (both living and dead) and associated macrofauna derived from seabed images taken across the development site. Statistically significant differences were observed in all physical measures of S. spinulosa as well the number (S) and diversity (H׳) of associated species, derived from seabed images classified according to the presence or absence of reef, validating the use of high resolution sidescan sonar to map these important biogenic habitats. High precision mapping in the early stages allowed for the micro-siting of wind turbines in a way that caused minimal damage to S. spinulosa reefs during construction. These habitats have since recovered and expanded in extent. The surveys undertaken at the Thanet Offshore Windfarm site demonstrate the importance of repeat mapping for this emerging industry, allowing habitat enhancement to be attributed to the development whilst preventing background habitat degradation from being wrongly attributed to the development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present Westerbork Synthesis Radio Telescope HI images, Lovell telescope multibeam H I wide-field mapping, William Herschel Telescope long-slit echelle Ca II observations, Wisconsin Halpha Mapper (WHAM) facility images, and IRAS ISSA 60- and 100-mum co-added images towards the intermediate- velocity cloud (IVC) at + 70 km s(-1), located in the general direction of the M15 globular cluster. When combined with previously published Arecibo data, the H I gas in the IVC is found to be clumpy, with a peak H I column density of similar to1.5 x 10(20) cm(-2), inferred volume density (assuming spherical symmetry) of similar to24 cm(-3)/D (kpc) and a maximum brightness temperature at a resolution of 81 x 14 arcsec(2) of 14 K. The major axis of this part of the IVC lies approximately parallel to the Galactic plane, as does the low- velocity H I gas and IRAS emission. The H I gas in the cloud is warm, with a minimum value of the full width at half-maximum velocity width of 5 km s(-1) corresponding to a kinetic temperature, in the absence of turbulence, of similar to540 K. From the H I data, there are indications of two-component velocity structure. Similarly, the Ca II spectra, of resolution 7 km s(-1), also show tentative evidence of velocity structure, perhaps indicative of cloudlets. Assuming that there are no unresolved narrow-velocity components, the mean values of log(10)[N(Ca II K) cm(2)] similar to 12.0 and Ca II/H I similar to2 5 x 10(-8) are typical of observations of high Galactic latitude clouds. This compares with a value of Ca II/H I>10(-6) for IVC absorption towards HD 203664, a halo star of distance 3 kpc, some 3.degrees1 from the main M15 IVC condensation. The main IVC condensation is detected by WHAM in Halpha with central local-standard-of-rest velocities of similar to60-70 km s(-1), and intensities uncorrected for Galactic extinction of up to 1.3 R, indicating that the gas is partially ionized. The FWHM values of the Halpha IVC component, at a resolution of 1degrees, exceed 30 km s(-1). This is some 10 km s(-1) larger than the corresponding H I value at a similar resolution, and indicates that the two components may not be mixed. However, the spatial and velocity coincidence of the Halpha and H I peaks in emission towards the main IVC component is qualitatively good. If the Halpha emission is caused solely by photoionization, the Lyman continuum flux towards the main IVC condensation is similar to2.7 x 10(6) photon cm(-2) s(-1). There is not a corresponding IVC Halpha detection towards the halo star HD 203664 at velocities exceeding similar to60 km s(- 1). Finally, both the 60- and 100-mum IRAS images show spatial coincidence, over a 0.675 x 0 625 deg(2) field, with both low- and intermediate-velocity H I gas (previously observed with the Arecibo telescope), indicating that the IVC may contain dust. Both the Halpha and tentative IRAS detections discriminate this IVC from high-velocity clouds, although the H I properties do not. When combined with the H I and optical results, these data point to a Galactic origin for at least parts of this IVC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present wide-field neutral hydrogen (H I) Lovell telescope multibeam, and Dominion Radio Astrophysical Observatory Hi synthesis observations, of the high velocity cloud (HVC) located in the general direction of the globular cluster M92. This cloud is part of the larger Complex C and lies at velocities between similar to -80 and -130 km s(-1) in the Local Standard of Rest. The Lovell telescope observations, of resolution 12 arcmin spatially and 3.0 km s(-1) in velocity, fully sampling a 3.1 degrees x 12.6 degrees RA-Dec grid, have found that this part of HVC Complex C comprises two main condensations, lying approximately north-south in declination, separated by similar to2 degrees and being parallel to the Galactic plane. At this resolution, peak values of the brightness temperature and Hi column density of similar to1.4 K and similar to5 x 10(19) cm(-2) are determined, with relatively high values of the full width half maximum velocity (FWHM) of similar to 22 km s(-1) being observed, equivalent to a gas kinetic temperature, in the absence of turbulence and geometric effects of similar to 10 000 K. Each of these properties, as well as the sizes of the clouds, are similar in the two components. The DRAO observations, towards the Northern HVC condensation, are the first high-resolution Hi spectra of Complex C. When smoothed to a resolution of 3 arcmin, they identify several Hi intensity peaks with column densities in the range 4-7 x 10(19) cm(-2). Further smoothing of these data to 6 arcmin resolution tentatively indicates that parts of the HVC consist of two velocity components, of similar brightness temperature, separated by similar to7 km s(-1) in velocity, and with FWHM velocity widths of similar to5-7 km s(-1). No IRAS 60 or 100 micron flux is associated with the M92 HVC. Cloud properties are briefly discussed and compared to previous observations of HVCs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An orthogonal vector approach is proposed for the synthesis of multi-beam directional modulation (DM) transmitters. These systems have the capability of concurrently projecting independent data streams into different specified spatial directions while simultaneously distorting signal constellations in all other directions. Simulated bit error rate (BER) spatial distributions are presented for various multi-beam system configurations in order to illustrate representative examples of physical layer security performance enhancement that can be achieved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sedimentologic and AMS 14C age data are reported for calcareous hemipelagic mud samples taken from gravity cores collected at sites within, or adjacent to five submarine landslides identified with multibeam bathymetry data on the Nerrang Plateau segment and surrounding canyons of eastern Australia's continental slope (Bribie Bowl, Coolangatta-2, Coolangatta-1, Cudgen and Byron). Sediments are comprised of mixtures of calcareous and terrigenous clay (10-20%), silt (50-65%) and sand (15-40%) and are generally uniform in appearance. Their carbonate contents vary between and 17% and 22% by weight while organic carbon contents are less than 10% by weight. Dating of conformably deposited material identified in ten of the twelve cores indicates a range of sediment accumulation rates between 0.017mka-1 and 0.2 mka-1 which are consistent with previous estimates reported for this area. One slide-adjacent core, and four within-landslide cores present depositional hiatus surfaces located at depths of 0.8 to 2.2 meters below the present-day seafloor and identified by a sharp, colour-change boundary; discernable but small increases in sediment stiffness; and a slight increase in sediment bulk density of 0.1 gcm-3. Distinct gaps in AMS 14C age of at least 20ka are recorded across these boundary surfaces. Examination of sub-bottom profiler records of transects through three of the within-slide core-sites and their nearby landslide scarps available for the Coolangatta-1 and Cudgen slides indicate that: 1) the youngest identifiable sediment layer reflectors upslope of these slides, terminate on and are truncated by slide rupture surfaces; and 2) there is no obvious evidence in the sub-bottom profiles for a post-slide sediment layer draped over or otherwise burying slide ruptures or exposed slide detachment surfaces. This suggests that both these submarine landslides are geologically recent and suggests that the hiatus surfaces identified in Coolangatta-1's and Cudgen's within-slide cores are either: a) erosional features that developed after the occurrence of the landslide in which case the hiatus surface age provides a minimum age for landslide occurrence or b) detachment surfaces from which slabs of near-surface sediment were removed during landsliding in which case the post-hiatus sediment dates indicates approximately when landsliding occurred. In either case, it is reasonable to suggest that these two spatially adjacent slides occurred penecontemporaneously approximately 20,000 years ago.