994 resultados para Multi-parameter Screen
Resumo:
Using a subtractive hybridisation approach, we enriched for genes likely to play a role in embryonic development of the mammalian face and other structures. This was achieved by subtracting cDNA derived from adult mouse liver from that derived from 10.5 dpc mouse embryonic branchial arches 1 and 2. Random sequencing of clones from the resultant library revealed that a high percentage correspond to genes with a previously established role in embryonic development and disease, while 15% represent novel or uncharacterised genes. Whole mount in situ hybridisation analysis of novel genes revealed that approximately 50% have restricted expression during embryonic development. In addition to expression in branchial arches, these genes showed a range of expression domains commonly including neural tube and somites. Notably, all genes analysed were found to be expressed not only in the branchial arches but also in the developing limb buds, providing support for the hypothesis that development of the limbs and face is likely to involve analogous molecular processes. (C) 2003 Wiley-Liss, Inc.
Resumo:
There are several competing methods commonly used to solve energy grained master equations describing gas-phase reactive systems. When it comes to selecting an appropriate method for any particular problem, there is little guidance in the literature. In this paper we directly compare several variants of spectral and numerical integration methods from the point of view of computer time required to calculate the solution and the range of temperature and pressure conditions under which the methods are successful. The test case used in the comparison is an important reaction in combustion chemistry and incorporates reversible and irreversible bimolecular reaction steps as well as isomerizations between multiple unimolecular species. While the numerical integration of the ODE with a stiff ODE integrator is not the fastest method overall, it is the fastest method applicable to all conditions.
Resumo:
In this paper we investigate the construction of state models for link invariants using representations of the braid group obtained from various gauge choices for a solution of the trigonometric Yang-Baxter equation. Our results show that it is possible to obtain invariants of regular isotopy (as defined by Kauffman) which may not be ambient isotopic. We illustrate our results with explicit computations using solutions of the trigonometric Yang-Baxter equation associated with the one-parameter family of minimal typical representations of the quantum superalgebra U-q,[gl(2/1)]. We have implemented MATHEMATICA code to evaluate the invariants for all prime knots up to 10 crossings.
Resumo:
Implementing multi-level governance has been a key priority in EU cohesion policy. This study assesses the perceived achievements and shortcomings in implementing European Social Fund by analyzing the deficits and weaknesses as well as the poor participation of local agents who are in direct contact with the beneficiaries in order to design and implement this fund, which is the main financial instrument of EU social policy.
Resumo:
Polymers have become the reference material for high reliability and performance applications. In this work, a multi-scale approach is proposed to investigate the mechanical properties of polymeric based material under strain. To achieve a better understanding of phenomena occurring at the smaller scales, a coupling of a Finite Element Method (FEM) and Molecular Dynamics (MD) modeling in an iterative procedure was employed, enabling the prediction of the macroscopic constitutive response. As the mechanical response can be related to the local microstructure, which in turn depends on the nano-scale structure, the previous described multi-scale method computes the stress-strain relationship at every analysis point of the macro-structure by detailed modeling of the underlying micro- and meso-scale deformation phenomena. The proposed multi-scale approach can enable prediction of properties at the macroscale while taking into consideration phenomena that occur at the mesoscale, thus offering an increased potential accuracy compared to traditional methods.
Resumo:
A numeric model has been proposed to investigate the mechanical and electrical properties of a polymeric/carbon nanotube (CNT) composite material subjected to a deformation force. The reinforcing phase affects the behavior of the polymeric matrix and depends on the nanofiber aspect ratio and preferential orientation. The simulations show that the mechanical behavior of a computer generated material (CGM) depends on fiber length and initial orientation in the polymeric matrix. It is also shown how the conductivity of the polymer/CNT composite can be calculated for each time step of applied stress, effectively providing the ability to simulate and predict strain-dependent electrical behavior of CNT nanocomposites.
Resumo:
This paper examines the performance of Portuguese equity funds investing in the domestic and in the European Union market, using several unconditional and conditional multi-factor models. In terms of overall performance, we find that National funds are neutral performers, while European Union funds under-perform the market significantly. These results do not seem to be a consequence of management fees. Overall, our findings are supportive of the robustness of conditional multi-factor models. In fact, Portuguese equity funds seem to be relatively more exposed to smallcaps and more value-oriented. Also, they present strong evidence of time-varying betas and, in the case of the European Union funds, of time-varying alphas too. Finally, in terms of market timing, our tests suggest that mutual fund managers in our sample do not exhibit any market timing abilities. Nevertheless, we find some evidence of timevarying conditional market timing abilities but only at the individual fund level.
Resumo:
Polymeric materials have become the reference material for high reliability and performance applications. However, their performance in service conditions is difficult to predict, due in large part to their inherent complex morphology, which leads to non-linear and anisotropic behavior, highly dependent on the thermomechanical environment under which it is processed. In this work, a multiscale approach is proposed to investigate the mechanical properties of polymeric-based material under strain. To achieve a better understanding of phenomena occurring at the smaller scales, the coupling of a finite element method (FEM) and molecular dynamics (MD) modeling, in an iterative procedure, was employed, enabling the prediction of the macroscopic constitutive response. As the mechanical response can be related to the local microstructure, which in turn depends on the nano-scale structure, this multiscale approach computes the stress-strain relationship at every analysis point of the macro-structure by detailed modeling of the underlying micro- and meso-scale deformation phenomena. The proposed multiscale approach can enable prediction of properties at the macroscale while taking into consideration phenomena that occur at the mesoscale, thus offering an increased potential accuracy compared to traditional methods.
Resumo:
Quantitative analysis of cine cardiac magnetic resonance (CMR) images for the assessment of global left ventricular morphology and function remains a routine task in clinical cardiology practice. To date, this process requires user interaction and therefore prolongs the examination (i.e. cost) and introduces observer variability. In this study, we sought to validate the feasibility, accuracy, and time efficiency of a novel framework for automatic quantification of left ventricular global function in a clinical setting.
Resumo:
Urban regeneration is more and more a “universal issue” and a crucial factor in the new trends of urban planning. It is no longer only an area of study and research; it became part of new urban and housing policies. Urban regeneration involves complex decisions as a consequence of the multiple dimensions of the problems that include special technical requirements, safety concerns, socio-economic, environmental, aesthetic, and political impacts, among others. This multi-dimensional nature of urban regeneration projects and their large capital investments justify the development and use of state-of-the-art decision support methodologies to assist decision makers. This research focuses on the development of a multi-attribute approach for the evaluation of building conservation status in urban regeneration projects, thus supporting decision makers in their analysis of the problem and in the definition of strategies and priorities of intervention. The methods presented can be embedded into a Geographical Information System for visualization of results. A real-world case study was used to test the methodology, whose results are also presented.
Resumo:
Esta dissertação, apresenta um simulador multi-agente para o mercado eléctrico. Neste simulador agentes heterogéneos, racionalmente limitados e com capacidade de aprendizagem, co-evoluem dinamicamente. O modelo de mercado apresentado é inspirado no mercado diário do MIBEL. É um modelo Pool, gerido por uma entidade operadora de mercado, onde compradores e vendedores podem licitar energia. No lado vendedor, empresas produtoras licitam a energia das suas unidades produtoras em pares quantidadepre ço. Por outro lado, uma vez que o cenário simulado é um mercado de venda, o comprador apresenta uma procura xa, i.e., submete apenas quantidades de energia. Todas as entidades do mercado eléctrico são vistas no sistema multi-agente, modelado através da plataforma INGENIAS, como agentes autónomos. Pelos resultados obtidos nas experiências feitas, confere-se que o simulador é uma ferramenta de apoio à tomada de decisão, pois ajuda a compreender o comportamento emergente do mercado e avalia o impacto das acções escolhidas, manualmente, pelo utilizador ou, automaticamente, atrav és da aprendizagem por reforço. A aprendizagem por reforço visa facilitar a tomada de decisão humana na venda de energia, licitando a energia das unidades produtoras de forma a maximizar os lucros.
Resumo:
Os programas de gravação e edição de áudio em ambientes multi-faixa são populares entre os músicos, para desenvolverem o seu trabalho. Estes programas apresentam funcionalidades de gravação e edição, mas não promovem o trabalho colaborativo entre músicos. De forma a colaborar, os vários elementos de uma banda musical têm de se reunir no mesmo local físico. Com este trabalho pretende-se criar uma solução para a colaboração no contexto da gravação e edição de áudio. Tem-se como objectivo o desenvolvimento de uma aplicação distribuída que facilite a gravação e edição de áudio, estando os elementos de cada banda musical em localizações físicas distintas. A aplicação desenvolvida tem funcionalidades de manipulação de áudio, bem como mecanismos para a sincronização do trabalho entre os vários elementos da banda. A manipulação de áudio consiste em reprodução, gravação, codificação e edição de áudio. O áudio é manipulado no formato Microsoft WAV, resultante da digitalização do áudio em Pulse Code Modulation (PCM) e posteriormente codificado em FLAC (Free Lossless Audio Codec) ou MP3 (Mpeg-1 Layer 3) de forma a minimizar a dimensão do ficheiro, diminuindo assim o espaço que ocupa em disco e a largura de banda necessária à sua transmissão pela internet. A edição consiste na aplicação de operações como amplificação, ecos, entre outros. Os elementos da banda instalam no seu computador a aplicação cliente, com interface gráfica onde desenvolvem o seu trabalho. Esta aplicação cliente mantém a lógica de sincronização do trabalho colaborativo, inserindo-se como um dos peers da arquitectura peer-to-peer híbrida da aplicação distribuída. Estes peers comunicam entre si, enviando informação acerca das operações aplicadas e áudio gravado pelos membros da banda.