852 resultados para Multi-Equation Income Model
Resumo:
Supervisor support, peer support and transfer motivation have been identified as important predictors for training transfer. Transfer motivation is supposed to mediate the support–training transfer relationship. Especially after team training interventions that include all team members (i.e., intact-team training), individual perception of these factors might be shared among team members. However, an integration of the team level in the training transfer process is rare, yet still needed. Analyzing 194 employees from 34 teams in the context of intact-team training interventions, we found similar relationships and processes at both levels of analysis: Social support enhances transfer motivation at the individual and team levels. Furthermore, motivation to transfer increases training transfer and serves as a connecting mechanism in the social support–training transfer link. The results underline the importance of (1) considering multiple levels in theories and research about the training transfer process and (2) ensuring the practice of individual-directed support and a shared, supportive climate within teams.
Resumo:
Correct predictions of future blood glucose levels in individuals with Type 1 Diabetes (T1D) can be used to provide early warning of upcoming hypo-/hyperglycemic events and thus to improve the patient's safety. To increase prediction accuracy and efficiency, various approaches have been proposed which combine multiple predictors to produce superior results compared to single predictors. Three methods for model fusion are presented and comparatively assessed. Data from 23 T1D subjects under sensor-augmented pump (SAP) therapy were used in two adaptive data-driven models (an autoregressive model with output correction - cARX, and a recurrent neural network - RNN). Data fusion techniques based on i) Dempster-Shafer Evidential Theory (DST), ii) Genetic Algorithms (GA), and iii) Genetic Programming (GP) were used to merge the complimentary performances of the prediction models. The fused output is used in a warning algorithm to issue alarms of upcoming hypo-/hyperglycemic events. The fusion schemes showed improved performance with lower root mean square errors, lower time lags, and higher correlation. In the warning algorithm, median daily false alarms (DFA) of 0.25%, and 100% correct alarms (CA) were obtained for both event types. The detection times (DT) before occurrence of events were 13.0 and 12.1 min respectively for hypo-/hyperglycemic events. Compared to the cARX and RNN models, and a linear fusion of the two, the proposed fusion schemes represents a significant improvement.
Resumo:
Patients suffering from cystic fibrosis (CF) show thick secretions, mucus plugging and bronchiectasis in bronchial and alveolar ducts. This results in substantial structural changes of the airway morphology and heterogeneous ventilation. Disease progression and treatment effects are monitored by so-called gas washout tests, where the change in concentration of an inert gas is measured over a single or multiple breaths. The result of the tests based on the profile of the measured concentration is a marker for the severity of the ventilation inhomogeneity strongly affected by the airway morphology. However, it is hard to localize underlying obstructions to specific parts of the airways, especially if occurring in the lung periphery. In order to support the analysis of lung function tests (e.g. multi-breath washout), we developed a numerical model of the entire airway tree, coupling a lumped parameter model for the lung ventilation with a 4th-order accurate finite difference model of a 1D advection-diffusion equation for the transport of an inert gas. The boundary conditions for the flow problem comprise the pressure and flow profile at the mouth, which is typically known from clinical washout tests. The natural asymmetry of the lung morphology is approximated by a generic, fractal, asymmetric branching scheme which we applied for the conducting airways. A conducting airway ends when its dimension falls below a predefined limit. A model acinus is then connected to each terminal airway. The morphology of an acinus unit comprises a network of expandable cells. A regional, linear constitutive law describes the pressure-volume relation between the pleural gap and the acinus. The cyclic expansion (breathing) of each acinus unit depends on the resistance of the feeding airway and on the flow resistance and stiffness of the cells themselves. Special care was taken in the development of a conservative numerical scheme for the gas transport across bifurcations, handling spatially and temporally varying advective and diffusive fluxes over a wide range of scales. Implicit time integration was applied to account for the numerical stiffness resulting from the discretized transport equation. Local or regional modification of the airway dimension, resistance or tissue stiffness are introduced to mimic pathological airway restrictions typical for CF. This leads to a more heterogeneous ventilation of the model lung. As a result the concentration in some distal parts of the lung model remains increased for a longer duration. The inert gas concentration at the mouth towards the end of the expirations is composed of gas from regions with very different washout efficiency. This results in a steeper slope of the corresponding part of the washout profile.
Resumo:
The nematode Caenorhabditis elegans is a well-known model organism used to investigate fundamental questions in biology. Motility assays of this small roundworm are designed to study the relationships between genes and behavior. Commonly, motility analysis is used to classify nematode movements and characterize them quantitatively. Over the past years, C. elegans' motility has been studied across a wide range of environments, including crawling on substrates, swimming in fluids, and locomoting through microfluidic substrates. However, each environment often requires customized image processing tools relying on heuristic parameter tuning. In the present study, we propose a novel Multi-Environment Model Estimation (MEME) framework for automated image segmentation that is versatile across various environments. The MEME platform is constructed around the concept of Mixture of Gaussian (MOG) models, where statistical models for both the background environment and the nematode appearance are explicitly learned and used to accurately segment a target nematode. Our method is designed to simplify the burden often imposed on users; here, only a single image which includes a nematode in its environment must be provided for model learning. In addition, our platform enables the extraction of nematode ‘skeletons’ for straightforward motility quantification. We test our algorithm on various locomotive environments and compare performances with an intensity-based thresholding method. Overall, MEME outperforms the threshold-based approach for the overwhelming majority of cases examined. Ultimately, MEME provides researchers with an attractive platform for C. elegans' segmentation and ‘skeletonizing’ across a wide range of motility assays.
Resumo:
Large uncertainties exist concerning the impact of Greenland ice sheet melting on the Atlantic meridional overturning circulation (AMOC) in the future, partly due to different sensitivity of the AMOC to freshwater input in the North Atlantic among climate models. Here we analyse five projections from different coupled ocean–atmosphere models with an additional 0.1 Sv (1 Sv = 10 6 m3/s) of freshwater released around Greenland between 2050 and 2089. We find on average a further weakening of the AMOC at 26°N of 1.1 ± 0.6 Sv representing a 27 ± 14% supplementary weakening in 2080–2089, as compared to the weakening relative to 2006–2015 due to the effect of the external forcing only. This weakening is lower than what has been found with the same ensemble of models in an identical experimen - tal set-up but under recent historical climate conditions. This lower sensitivity in a warmer world is explained by two main factors. First, a tendency of decoupling is detected between the surface and the deep ocean caused by an increased thermal stratification in the North Atlantic under the effect of global warming. This induces a shoaling of ocean deep ventilation through convection hence ventilating only intermediate levels. The second important effect concerns the so-called Canary Current freshwater leakage; a process by which additionally released fresh water in the North Atlantic leaks along the Canary Current and escapes the convection zones towards the subtropical area. This leakage is increasing in a warming climate, which is a consequence of decreasing gyres asymmetry due to changes in Ekman rumping. We suggest that these modifications are related with the northward shift of the jet stream in a warmer world. For these two reasons the AMOC is less susceptible to freshwater perturbations (near the deep water formation sides) in the North Atlantic as compared to the recent historical climate conditions. Finally, we propose a bilinear model that accounts for the two former processes to give a conceptual explanation about the decreasing AMOC sensitivity due to freshwater input. Within the limit of this bilinear model, we find that 62 ± 8% of the reduction in sensitivity is related with the changes in gyre asymmetry and freshwater leakage and 38 ± 8% is due to the reduction in deep ocean ventilation associated with the increased stratification in the North Atlantic.
Resumo:
With substance abuse treatment expanding in prisons and jails, understanding how behavior change interacts with a restricted setting becomes more essential. The Transtheoretical Model (TTM) has been used to understand intentional behavior change in unrestricted settings, however, evidence indicates restrictive settings can affect the measurement and structure of the TTM constructs. The present study examined data from problem drinkers at baseline and end-of-treatment from three studies: (1) Project CARE (n = 187) recruited inmates from a large county jail; (2) Project Check-In (n = 116) recruited inmates from a state prison; (3) Project MATCH, a large multi-site alcohol study had two recruitment arms, aftercare (n = 724 pre-treatment and 650 post-treatment) and outpatient (n = 912 pre-treatment and 844 post-treatment). The analyses were conducted using cross-sectional data to test for non-invariance of measures of the TTM constructs: readiness, confidence, temptation, and processes of change (Structural Equation Modeling, SEM) across restricted and unrestricted settings. Two restricted (jail and aftercare) and one unrestricted group (outpatient) entering treatment and one restricted (prison) and two unrestricted groups (aftercare and outpatient) at end-of-treatment were contrasted. In addition TTM end-of-treatment profiles were tested as predictors of 12 month drinking outcomes (Profile Analysis). Although SEM did not indicate structural differences in the overall TTM construct model across setting types, there were factor structure differences on the confidence and temptation constructs at pre-treatment and in the factor structure of the behavioral processes at the end-of-treatment. For pre-treatment temptation and confidence, differences were found in the social situations factor loadings and in the variance for the confidence and temptation latent factors. For the end-of-treatment behavioral processes, differences across the restricted and unrestricted settings were identified in the counter-conditioning and stimulus control factor loadings. The TTM end-of-treatment profiles were not predictive of drinking outcomes in the prison sample. Both pre and post-treatment differences in structure across setting types involved constructs operationalized with behaviors that are limited for those in restricted settings. These studies suggest the TTM is a viable model for explicating addictive behavior change in restricted settings but calls for modification of subscale items that refer to specific behaviors and caution in interpreting the mean differences across setting types for problem drinkers. ^
Resumo:
Objective. To measure the demand for primary care and its associated factors by building and estimating a demand model of primary care in urban settings.^ Data source. Secondary data from 2005 California Health Interview Survey (CHIS 2005), a population-based random-digit dial telephone survey, conducted by the UCLA Center for Health Policy Research in collaboration with the California Department of Health Services, and the Public Health Institute between July 2005 and April 2006.^ Study design. A literature review was done to specify the demand model by identifying relevant predictors and indicators. CHIS 2005 data was utilized for demand estimation.^ Analytical methods. The probit regression was used to estimate the use/non-use equation and the negative binomial regression was applied to the utilization equation with the non-negative integer dependent variable.^ Results. The model included two equations in which the use/non-use equation explained the probability of making a doctor visit in the past twelve months, and the utilization equation estimated the demand for primary conditional on at least one visit. Among independent variables, wage rate and income did not affect the primary care demand whereas age had a negative effect on demand. People with college and graduate educational level were associated with 1.03 (p < 0.05) and 1.58 (p < 0.01) more visits, respectively, compared to those with no formal education. Insurance was significantly and positively related to the demand for primary care (p < 0.01). Need for care variables exhibited positive effects on demand (p < 0.01). Existence of chronic disease was associated with 0.63 more visits, disability status was associated with 1.05 more visits, and people with poor health status had 4.24 more visits than those with excellent health status. ^ Conclusions. The average probability of visiting doctors in the past twelve months was 85% and the average number of visits was 3.45. The study emphasized the importance of need variables in explaining healthcare utilization, as well as the impact of insurance, employment and education on demand. The two-equation model of decision-making, and the probit and negative binomial regression methods, was a useful approach to demand estimation for primary care in urban settings.^
Resumo:
The introduction of new medical treatments in recent years, commonly referred to as highly active antiretroviral therapy, has greatly increased the survival of patients with HIV/AIDS. As patients with HIV/AIDS continue to live longer, other important health-related outcomes, such as quality of life (QOL), should be thoroughly studied. There is also evidence that racial/ethnic minorities are disproportionately affected by HIV/AIDS, but potential health disparities among individuals already infected with HIV/AIDS have not been adequately examined in ethnically diverse populations. The purpose of this dissertation was to: (1) examine the impact of both demographic and behavioral variables on functional status and overall QOL among a population of ethnically diverse and economically disadvantaged HIV/AIDS patients; (2) examine the psychometric properties of a functional status measure—the Household and Leisure Time Activities questionnaire (HLTA); and (3) assess a proximal-distal theoretical framework for QOL using a full structural equation model in a population of patients with HIV/AIDS. Analyses were performed using data collected in the fall of 2000 from the project, Health and Work-Related Quality of Life and Health Risk Behaviors in a Multiethnic HIV-positive Population . Investigators from The University of Texas M.D. Anderson Cancer Center, The University of Texas-Houston Medical School, and The University of Texas School of Public Health conducted this project. The study site was the Thomas Street Clinic (TSC), a comprehensive HIV/AIDS care facility funded by the Harris County Hospital District (HCHD). TSC provides HIV/AIDS care to a diverse population of approximately 4000 medically indigent residents of Harris County. A systematic, consecutive sampling procedure yielded a sample size of 348 patients. Findings suggested that overall QOL, work-role functioning, household functioning, and leisure time functioning were impaired in this patient population. Results from the psychometric evaluation indicated that the HLTA was a reliable and valid measure of household and leisure time functioning status in a low-income multiethnic HIV-positive population. Finally, structural equation modeling of the proximal-distal QOL model suggested that this model was not a viable representation of the relationship between the study variables in this patient population. ^
Resumo:
EOT11a is a global (E)mpirical (O)cean (T)ide model derived in 2011 by residual analysis of multi-mission satellite (a)ltimeter data. EOT11a includes amplitudes and phases of the main astronomical tides M2, S2, N2, K2, 2N2, O1, K1, P2, and Q1, the non-linear constituent M4, the long period tides Mm and Mf, and the radiational tide S1. Ocean tides as well as loading tides are provided. EOT11a was computed by means of residual tidal analysis of multi-mission altimeter data from TOPEX/Poseidon, ERS-2, ENVISAT, and Jason-1/2, as far as acquired between September 1992 and April 2010. The resolution of 7.5'x7.5' is identical with FES2004 which was used as reference model for the residual tide analysis. The development of EOT11a was funded by the Deutsche Forschungsgemeinschaft (DFG) under grant BO1228/6-2.
Resumo:
The study of matter under conditions of high density, pressure, and temperature is a valuable subject for inertial confinement fusion (ICF), astrophysical phenomena, high-power laser interaction with matter, etc. In all these cases, matter is heated and compressed by strong shocks to high pressures and temperatures, becomes partially or completely ionized via thermal or pressure ionization, and is in the form of dense plasma. The thermodynamics and the hydrodynamics of hot dense plasmas cannot be predicted without the knowledge of the equation of state (EOS) that describes how a material reacts to pressure and how much energy is involved. Therefore, the equation of state often takes the form of pressure and energy as functions of density and temperature. Furthermore, EOS data must be obtained in a timely manner in order to be useful as input in hydrodynamic codes. By this reason, the use of fast, robust and reasonably accurate atomic models, is necessary for computing the EOS of a material.