840 resultados para Movement Data Analysis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper is part of a special issue of Applied Geochemistry focusing on reliable applications of compositional multivariate statistical methods. This study outlines the application of compositional data analysis (CoDa) to calibration of geochemical data and multivariate statistical modelling of geochemistry and grain-size data from a set of Holocene sedimentary cores from the Ganges-Brahmaputra (G-B) delta. Over the last two decades, understanding near-continuous records of sedimentary sequences has required the use of core-scanning X-ray fluorescence (XRF) spectrometry, for both terrestrial and marine sedimentary sequences. Initial XRF data are generally unusable in ‘raw-format’, requiring data processing in order to remove instrument bias, as well as informed sequence interpretation. The applicability of these conventional calibration equations to core-scanning XRF data are further limited by the constraints posed by unknown measurement geometry and specimen homogeneity, as well as matrix effects. Log-ratio based calibration schemes have been developed and applied to clastic sedimentary sequences focusing mainly on energy dispersive-XRF (ED-XRF) core-scanning. This study has applied high resolution core-scanning XRF to Holocene sedimentary sequences from the tidal-dominated Indian Sundarbans, (Ganges-Brahmaputra delta plain). The Log-Ratio Calibration Equation (LRCE) was applied to a sub-set of core-scan and conventional ED-XRF data to quantify elemental composition. This provides a robust calibration scheme using reduced major axis regression of log-ratio transformed geochemical data. Through partial least squares (PLS) modelling of geochemical and grain-size data, it is possible to derive robust proxy information for the Sundarbans depositional environment. The application of these techniques to Holocene sedimentary data offers an improved methodological framework for unravelling Holocene sedimentation patterns.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Market research is often conducted through conventional methods such as surveys, focus groups and interviews. But the drawbacks of these methods are that they can be costly and timeconsuming. This study develops a new method, based on a combination of standard techniques like sentiment analysis and normalisation, to conduct market research in a manner that is free and quick. The method can be used in many application-areas, but this study focuses mainly on the veganism market to identify vegan food preferences in the form of a profile. Several food words are identified, along with their distribution between positive and negative sentiments in the profile. Surprisingly, non-vegan foods such as cheese, cake, milk, pizza and chicken dominate the profile, indicating that there is a significant market for vegan-suitable alternatives for such foods. Meanwhile, vegan-suitable foods such as coconut, potato, blueberries, kale and tofu also make strong appearances in the profile. Validation is performed by using the method on Volkswagen vehicle data to identify positive and negative sentiment across five car models. Some results were found to be consistent with sales figures and expert reviews, while others were inconsistent. The reliability of the method is therefore questionable, so the results should be used with caution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The object of this report is to present the data and conclusions drawn from the analysis of the origin and destination information. Comments on the advisability and correctness of the approach used by Iowa are encouraged.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New morpho-bathymetric and tectono-stratigraphic data on Naples and Salerno Gulfs, derived from bathymetric and seismic data analysis and integrated geologic interpretation are here presented. The CUBE(Combined Uncertainty Bathymetric Estimator) method has been applied to complex morphologies, such as the Capri continental slope and the related geological structures occurring in the Salerno Gulf.The bathymetric data analysis has been carried out for marine geological maps of the whole Campania continental margin at scales ranging from 1:25.000 to 1:10.000, including focused examples in Naples and Salerno Gulfs, Naples harbour, Capri and Ischia Islands and Salerno Valley. Seismic data analysis has allowed for the correlation of main morpho-structural lineaments recognized at a regional scale through multichannel profiles with morphological features cropping out at the sea bottom, evident from bathymetry.Main fault systems in the area have been represented on a tectonic sketch map, including the master fault located northwards to the Salerno Valley half graben. Some normal faults parallel to the master fault have been interpreted from the slope map derived from bathymetric data. A complex system of antithetic faults bound two morpho-structural highs located 20km to the south of the Capri Island. Some hints of compressional reactivation of normal faults in an extensional setting involving the whole Campania continental margin have been shown from seismic interpretation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wind-generated waves in the Kara, Laptev, and East-Siberian Seas are investigated using altimeter data from Envisat RA-2 and SARAL-AltiKa. Only isolated ice-free zones had been selected for analysis. Wind seas can be treated as pure wind-generated waves without any contamination by ambient swell. Such zones were identified using ice concentration data from microwave radiometers. Altimeter data, both significant wave height (SWH) and wind speed, for these areas were further obtained for the period 2002-2012 using Envisat RA-2 measurements, and for 2013 using SARAL-AltiKa. Dependencies of dimensionless SWH and wavelength on dimensionless wave generation spatial scale are compared to known empirical dependencies for fetch-limited wind wave development. We further check sensitivity of Ka- and Ku-band and discuss new possibilities that AltiKa's higher resolution can open.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This text is taken from the postgraduate thesis, which one of the authors (A.B.) developed for the degree of Medical Physicist in the School on Medical Physics of the University of Florence. The text explores the feasibility of quantitative Magnetic Resonance Spectroscopy as a tool for daily clinical routine use. The results and analysis comes from two types of hyper spectral images: the first set are hyper spectral images coming from a standard phantom (reference images); and hyper spectral images obtained from a group of patients who have undergone MRI examinations at the Santa Maria Nuova Hospital. This interdisciplinary work stems from the IFAC-CNR know how in terms of data analysis and nanomedicine, and the clinical expertise of Radiologists and Medical Physicists. The results reported here, which were the subject of the thesis, are original, unpublished, and represent independent work.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For a long time, electronic data analysis has been associated with quantitative methods. However, Computer Assisted Qualitative Data Analysis Software (CAQDAS) are increasingly being developed. Although the CAQDAS has been there for decades, very few qualitative health researchers report using it. This may be due to the difficulties that one has to go through to master the software and the misconceptions that are associated with using CAQDAS. While the issue of mastering CAQDAS has received ample attention, little has been done to address the misconceptions associated with CAQDAS. In this paper, the author reflects on his experience of interacting with one of the popular CAQDAS (NVivo) in order to provide evidence-based implications of using the software. The key message is that unlike statistical software, the main function of CAQDAS is not to analyse data but rather to aid the analysis process, which the researcher must always remain in control of. In other words, researchers must equally know that no software can analyse qualitative data. CAQDAS are basically data management packages, which support the researcher during analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, we further extend the recently developed adaptive data analysis method, the Sparse Time-Frequency Representation (STFR) method. This method is based on the assumption that many physical signals inherently contain AM-FM representations. We propose a sparse optimization method to extract the AM-FM representations of such signals. We prove the convergence of the method for periodic signals under certain assumptions and provide practical algorithms specifically for the non-periodic STFR, which extends the method to tackle problems that former STFR methods could not handle, including stability to noise and non-periodic data analysis. This is a significant improvement since many adaptive and non-adaptive signal processing methods are not fully capable of handling non-periodic signals. Moreover, we propose a new STFR algorithm to study intrawave signals with strong frequency modulation and analyze the convergence of this new algorithm for periodic signals. Such signals have previously remained a bottleneck for all signal processing methods. Furthermore, we propose a modified version of STFR that facilitates the extraction of intrawaves that have overlaping frequency content. We show that the STFR methods can be applied to the realm of dynamical systems and cardiovascular signals. In particular, we present a simplified and modified version of the STFR algorithm that is potentially useful for the diagnosis of some cardiovascular diseases. We further explain some preliminary work on the nature of Intrinsic Mode Functions (IMFs) and how they can have different representations in different phase coordinates. This analysis shows that the uncertainty principle is fundamental to all oscillating signals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Comunicação apresentada na 44th SEFI Conference, 12-­15 September 2016, Tampere, Finland

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Analyzing large-scale gene expression data is a labor-intensive and time-consuming process. To make data analysis easier, we developed a set of pipelines for rapid processing and analysis poplar gene expression data for knowledge discovery. Of all pipelines developed, differentially expressed genes (DEGs) pipeline is the one designed to identify biologically important genes that are differentially expressed in one of multiple time points for conditions. Pathway analysis pipeline was designed to identify the differentially expression metabolic pathways. Protein domain enrichment pipeline can identify the enriched protein domains present in the DEGs. Finally, Gene Ontology (GO) enrichment analysis pipeline was developed to identify the enriched GO terms in the DEGs. Our pipeline tools can analyze both microarray gene data and high-throughput gene data. These two types of data are obtained by two different technologies. A microarray technology is to measure gene expression levels via microarray chips, a collection of microscopic DNA spots attached to a solid (glass) surface, whereas high throughput sequencing, also called as the next-generation sequencing, is a new technology to measure gene expression levels by directly sequencing mRNAs, and obtaining each mRNA’s copy numbers in cells or tissues. We also developed a web portal (http://sys.bio.mtu.edu/) to make all pipelines available to public to facilitate users to analyze their gene expression data. In addition to the analyses mentioned above, it can also perform GO hierarchy analysis, i.e. construct GO trees using a list of GO terms as an input.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thanks to the advanced technologies and social networks that allow the data to be widely shared among the Internet, there is an explosion of pervasive multimedia data, generating high demands of multimedia services and applications in various areas for people to easily access and manage multimedia data. Towards such demands, multimedia big data analysis has become an emerging hot topic in both industry and academia, which ranges from basic infrastructure, management, search, and mining to security, privacy, and applications. Within the scope of this dissertation, a multimedia big data analysis framework is proposed for semantic information management and retrieval with a focus on rare event detection in videos. The proposed framework is able to explore hidden semantic feature groups in multimedia data and incorporate temporal semantics, especially for video event detection. First, a hierarchical semantic data representation is presented to alleviate the semantic gap issue, and the Hidden Coherent Feature Group (HCFG) analysis method is proposed to capture the correlation between features and separate the original feature set into semantic groups, seamlessly integrating multimedia data in multiple modalities. Next, an Importance Factor based Temporal Multiple Correspondence Analysis (i.e., IF-TMCA) approach is presented for effective event detection. Specifically, the HCFG algorithm is integrated with the Hierarchical Information Gain Analysis (HIGA) method to generate the Importance Factor (IF) for producing the initial detection results. Then, the TMCA algorithm is proposed to efficiently incorporate temporal semantics for re-ranking and improving the final performance. At last, a sampling-based ensemble learning mechanism is applied to further accommodate the imbalanced datasets. In addition to the multimedia semantic representation and class imbalance problems, lack of organization is another critical issue for multimedia big data analysis. In this framework, an affinity propagation-based summarization method is also proposed to transform the unorganized data into a better structure with clean and well-organized information. The whole framework has been thoroughly evaluated across multiple domains, such as soccer goal event detection and disaster information management.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A definição mais plausível para esta pesquisa é aquela onde a adolescência se estabelece de acordo com a história de vida e o contexto sociocultural no qual o sujeito está inserido, que envolve, na transição para a fase adulta, transformações na mente, na personalidade, no comportamento e principalmente no corpo. O grupo das adolescentes pesquisadas encontra-se numa fase da vida de descobertas, mudanças (psicológicas identitárias e acima de tudo corporais) assim como todo e qualquer sujeito que encontra-se nessa fase da vida. Com a entrada na adolescência, ocorre a formação de grupos no qual as adolescentes vão se identificar. Cada grupo tem a sua marca, o seu estilo, e o corpo parece ser o grande tradutor dessa nova fase, os efeitos de comparação começam a surgir, o medo de não ser aceita pelo grupo faz com que a adolescente recorra a métodos que acredita ser eficazes na busca de um eu ideal e consequentemente um corpo ideal. Esta pesquisa discute as idealizações corporais das jovens encontradas durante a realização da pesquisa de campo, e as ligações que existem entre essa idealização e as constituições desse ideal sob a concepção do movimento corporal. A análise de dados se baseou em interpretações psicológicas acerca dos desenhos realizados pelas adolescentes. Visto que a Comunidade da Mangueira é um espaço multicultural (estilos de músicas, danças, esportes, entre outros), mas que em comum tem o corpo como o principal tradutor dessas vivências. A busca pelo corpo ideal está longe de ser integralmente satisfeito, sendo a cultura a grande responsável pela elaboração emocional, mental e principalmente corporal das adolescentes do grupo de Jazz do CCC. A aplicação da metodologia do Grupo Operativo teve como um dos objetivos desconstruir e reestruturar o imaginário das adolescentes o conceito de corpo ideal, que atualmente é visto de forma rígida e estereotipada pela sociedade contemporânea. Tal ferramenta foi muito útil no processo de desconstrução do conceito de corpo ideal por parte das meninas. As dinâmicas utilizadas tiveram como objetivos despertar novos olhares sobre o corpo, assim como criar situações onde as jovens pudessem buscar o melhor de si, mas sem fugir da própria realidade corporal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Patterns of movement in aquatic animals reflect ecologically important behaviours. Cyclical changes in the abiotic environment influence these movements, but when multiple processes occur simultaneously, identifying which is responsible for the observed movement can be complex. Here we used acoustic telemetry and signal processing to define the abiotic processes responsible for movement patterns in freshwater whiprays (Himantura dalyensis). Acoustic transmitters were implanted into the whiprays and their movements detected over 12 months by an array of passive acoustic receivers, deployed throughout 64 km of the Wenlock River, Qld, Australia. The time of an individual's arrival and departure from each receiver detection field was used to estimate whipray location continuously throughout the study. This created a linear-movement-waveform for each whipray and signal processing revealed periodic components within the waveform. Correlation of movement periodograms with those from abiotic processes categorically illustrated that the diel cycle dominated the pattern of whipray movement during the wet season, whereas tidal and lunar cycles dominated during the dry season. The study methodology represents a valuable tool for objectively defining the relationship between abiotic processes and the movement patterns of free-ranging aquatic animals and is particularly expedient when periods of no detection exist within the animal location data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a framework for fitting multiple random walks to animal movement paths consisting of ordered sets of step lengths and turning angles. Each step and turn is assigned to one of a number of random walks, each characteristic of a different behavioral state. Behavioral state assignments may be inferred purely from movement data or may include the habitat type in which the animals are located. Switching between different behavioral states may be modeled explicitly using a state transition matrix estimated directly from data, or switching probabilities may take into account the proximity of animals to landscape features. Model fitting is undertaken within a Bayesian framework using the WinBUGS software. These methods allow for identification of different movement states using several properties of observed paths and lead naturally to the formulation of movement models. Analysis of relocation data from elk released in east-central Ontario, Canada, suggests a biphasic movement behavior: elk are either in an "encamped" state in which step lengths are small and turning angles are high, or in an "exploratory" state, in which daily step lengths are several kilometers and turning angles are small. Animals encamp in open habitat (agricultural fields and opened forest), but the exploratory state is not associated with any particular habitat type.