989 resultados para Monsoon Boundary Layer
Resumo:
This paper presents an assessment of the performance of an embedded propulsion system in the presence of distortion associated with boundary layer ingestion. For fan pressure ratios of interest for civil transports, the benefits of boundary layer ingestion are shown to be very sensitive to the magnitude of fan and duct losses. The distortion transfer across the fan, basically the comparison of the stagnation pressure non-uniformity downstream of the fan to that upstream of the fan, has a major role in determining the impact of boundary layer ingestion on overall fuel burn. This, in turn, puts requirements on the fidelity with which one needs to assess the distortion transfer, and thus the type of models that need to be used in such assessment. For the three-dimensional distortions associated with fuselage boundary layers ingested into a subsonic diffusing inlet, it is found that boundary layer ingestion can provide decreases in fuel burn of several per cent. It is also shown that a promising avenue for mitigating the risks (aerodynamic as well as aeromechanical) in boundary layer ingestion is to mix out the flow before it reaches the engine face.
Resumo:
An experimental investigation of the unsteady interaction between a turbulent boundary layer and a normal shock wave of strength M∞ = 1.4 subject to periodic forcing in a parallel walled duct has been conducted. Emphasis has been placed on the mechanism by which changes in the global flow field influence the local interaction structure. Static pressure measurements and high speed Schlieren images of the unsteady interaction have been obtained. The pressure rise across the interaction and the appearance of the local SBLI structure have been observed to vary during the cycle of periodic shock wave motion. The magnitude of the pressure rise across the interaction is found to be related to the relative Mach number of the unsteady shock wave as it undergoes periodic motion. Variations in the upstream Influence of the interaction are sensitive to the magnitude and direction of shock wave velocity and acceleration and it is proposed that a viscous lag exists between the point of boundary layer separation and the shock wave position. Further work exploring the implications of these findings is proposed, including studies of the variation in position of the points of boundary layer separation and reattachment.
Resumo:
A novel supersonic wind tunnel setup is proposed to enable the investigation of control on a normal shock wave. Previous experimental arrangements were found to suffer from shock instability. Wind tunnel tests with and without control have confirmed the capability of the new setup to stabilise a shock structure at a target position without changing the nature of the shock wave / boundary layer interaction flow at M∞ = 1.3 and M ∞ = 1.5. Flow visualisation and pressure measurements with the new setup have revealed detailed characteristics of shock wave / boundary layer interactions and a λ-shock structure as well as benefits of control in total drag reduction in the presence of 3D bump control.
Resumo:
Supersonic engine intakes operating supercritically feature shock wave / boundary layer interactions (SBLIs), which are conventionally controlled using boundary layer bleed. The momentum loss of bleed flow causes high drag, compromising intake performance. Micro-ramp sub-boundary layer vortex generators (SBVGs) have been proposed as an alternative form of flow control for oblique SBLIs in order to reduce the bleed requirement. Experiments have been conducted at Mach 2.5 to characterise the flow details on such devices and investigate their ability to control the interaction between an oblique shock wave and the naturally grown turbulent boundary layer on the tunnel floor. Micro-ramps of four sizes with heights ranging from 25% to 75% of the uncontrolled boundary layer thickness were tested. The flow over all sizes of microramp was found to be similar, featuring streamwise counter-rotating vortices which entrain high momentum fluid, locally reducing the boundary layer displacement thickness. When installed ahead of the shock interaction it was found that the positioning of the micro-ramps is of limited importance. Micro-ramps did not eliminate flow separation. However, the previously two-dimensional separation was broken up into periodic three-dimensional separation zones. The interaction length was reduced and the pressure gradient across the interaction was increased.
Resumo:
A workshop on the computational fluid dynamics (CFD) prediction of shock boundary-layer interactions (SBLIs) was held at the 48th AIAA Aerospace Sciences Meeting. As part of the workshop numerous CFD analysts submitted solutions to four experimentally measured SBLIs. This paper describes the assessment of the CFD predictions. The assessment includes an uncertainty analysis of the experimental data, the definition of an error metric and the application of that metric to the CFD solutions. The CFD solutions provided very similar levels of error and in general it was difficult to discern clear trends in the data. For the Reynolds Averaged Navier-Stokes methods the choice of turbulence model appeared to be the largest factor in solution accuracy. Large-eddy simulation methods produced error levels similar to RANS methods but provided superior predictions of normal stresses.
Resumo:
An experimental investigation into the response of transonic SBLIs to periodic down-stream pressure perturbations in a parallel walled duct has been conducted. Tests have been carried out with a shock strength of M ∞ = 1.5 for pressure perturbation frequencies in the range 16-90 Hz. Analysis of the steady interaction at M∞ = 1.5 has also been made. The principle measurement techniques were high speed schlieren photography and laser Doppler anemometry. The structure of the steady SBLI was found to be highly three-dimensional, with large corner flows and sidewall SBLIs. These aspects are thought to influence the upstream transmission of pressure information through the interaction by affecting the post-shock flow field, including the extent of regions of secondary supersonic flow. At low frequency, the dynamics of shock motion can be predicted using an inviscid analytical model. At increased frequencies, viscous effects become significant and the shock exhibits unexpected dynamic behaviour, due to a phase lag between the upstream transmission of pressure information in the core flow and in the viscous boundary layers. Flow control in the form of micro-vane vortex generators was found to have a small impact on shock dynamics, due to the effect it had on the post-shock flow field outside the viscous boundary layer region. The relationship between inviscid and viscous effects is developed and potential destabilising mechanisms for SBLIs in practical applications are suggested. Copyright © 2009 by Paul Bruce and Holger Babinsky.
Resumo:
The flow typical of that occurring over the windward lip of an aero engine intake operating in a crosswind has been reproduced on a 2D lip. The uncontrolled boundary layer undergoes a laminar separation at the leading edge of the lip. It has been shown that a minimum size of boundary layer trip, positioned upstream of the separation location, is required to enable the flow to remain attached around the leading edge. A turbulent separation then occurs in the diffuser. Larger diameter trips promote earlier diffuser separation. Copyright © 2008 by the American Institute of Aeronautics and Astronautics, Inc.
Resumo:
Experiments were conducted investigating the interaction between a normal shock wave and a corner boundary layer in a constant area rectangular duct. Active corner suction and passive blowing were applied to manipulate the natural corner flows developing in the working section of the Cambridge University supersonic wind tunnel. In addition robust vane micro-vortex generators were applied to the corners of the working section. Experiments were conducted at Mach numbers of M∞=1.4 and 1.5. Flow visualisation was carried out through schlieren and surface oil flow, while static pressures were recorded via floor tappings. The results indicate that an interplay occurs between the corner flow and the centre line flow. It is believed that corner flow separation acts to induce a shock bifurcation, which in turn leads to a smearing of the adverse pressure gradient elsewhere. In addition the blockage effect from the corners was seen to result in a reacceleration of the subsonic post-shock flow. As a result manipulation of the corner regions allows a separated or attached centre line flow to be observed at the same Mach number. Copyright © 2010 by Babinsky, Burton, Bruce.
Resumo:
The present study aims to provide insight into the parameters affecting practical laminar-flow-control suction power requirements for a commercial laminar-flying-wing transport aircraft. It is shown that there is a minimum power requirement independent of the suction system design, associated with the stagnation pressure loss in the boundary layer. This requirement increases with aerofoil section thickness, but depends only weakly on Mach number and (for a thick, lightly loaded laminar flying wing) lift coefficient. Deviation from the optimal suction distribution, due to a practical chamber-based architecture, is found to have very little effect on the overall suction coefficient; hence, to a good approximation, the power penalty is given by the product of the optimal suction flow rate coefficient and the average skin pressure drop. In the spanwise direction, through suitable choice of chamber depth, the pressure drop due to frictional and inertial effects may be rendered negligible. Finally, if there are fewer pumps than chambers, the average pressure drop from the aerofoil surface to the pump collector ducts, rather than to the chambers, determines the power penalty. For the representative laminar-flying-wing aircraft parameters considered here, the minimum power associated with boundary-layer losses alone contributes some 80-90% of the total power requirement. © 2011 by the American Institute of Aeronautics and Astronautics, Inc.
Resumo:
Amplitude and phase velocity measurements on the laminar oscillatory viscous boundary layer produced by acoustic waves are presented. The measurements were carried out in acoustic standing waves in air with frequencies of 68.5 and 114.5 Hz using laser Doppler anemometry and particle image velocimetry. The results obtained by these two techniques are in good agreement with the predictions made by the Rayleigh viscous boundary layer theory and confirm the existence of a local maximum of the velocity amplitude and its expected location.