961 resultados para Molecular absorption Spectrophotometry in the ultraviolet-visible
Resumo:
The Brazilian Spotted Fever (BSF) is a zoonotic disease caused by Rickettsia rickettsii and transmitted by ticks of the genus Amblyomma, more frequently, Amblyomma cajennense. The aim of this paper was to report the first molecular detection of R. rickettsii on R. sanguineus naturally infected in Rio de Janeiro, Brazil. Ticks were collected from dogs in a rural region of Resende municipality, Rio de Janeiro State, Brazil (22º30'9.46"S, 44º42'44.29"WO), where occurred five human cases of BSF in 2006. The ticks were identified under a stereoscopic microscope and separated in pools by stages, species and sex. DNA extraction was carried out using QIAamp DNA Mini Kit (QIAGEN®). The DNA was submitted to PCR amplification using 04 set of primers: Rr190.70p/Rr190.602n (OmpA, 532bp), BG1-21/BG2-20 (OmpB, 650bp), Tz15/Tz16 (17 kDa protein-encoding gene, 246bp) and RpCS.877p/RpCS.1258n (gltA, 381bp). PCR products were separated by electrophoresis on 1% agarose gels and visualized under ultraviolet light with ethidium bromide. PCR products of the expected sizes were purified by QIAquick® and sequenced by ABI PRISM®. The generated nucleotide sequences were edited with using Bioedit® software and compared with the corresponding homologous sequences available through GenBank, using Discontiguous Mega Blast (http://www.ncbi.nlm.nih.gov). It was confirmed R. rickettsii by sequencing of the material (GenBank FJ356230). The molecular characterization of R. rickettsii in the tick R. sanguineus emphasizes the role of dogs as carriers of ticks from the environment to home. Moreover, this result suggests that there is a considerable chance for active participation of R. sanguineus as one of tick species in the transmission of R. ricketsii to human being in the Brazilian territory.
Resumo:
Bovine meningoencephalitis caused by BHV-5, a double-stranded DNA enveloped virus that belongs to the family Herpesviridae and subfamily Alphaherpesvirinae, is an important differential diagnosis of central nervous diseases. The aim of this study was to describe the histological changes in the central nervous system of calves experimentally infected with BHV-5 and compare these changes with the PCR and IHC results. Formalin-fixed paraffin-embedded central nervous system samples from calves previously inoculated with BHV-5 were microscopically evaluated and tested using IHC and PCR. All the animals presented with nonsuppurative meningoencephalitis. From 18 evaluated areas of each calf, 32.41% and 35.19% were positive by IHC and PCR, respectively. The telencephalon presented more accentuated lesions and positive areas in the PCR than other encephalic areas and was the best sampling area for diagnostic purposes. Positive areas in the IHC and PCR were more injured than IHC and PCR negative areas. The animal with neurological signs showed more PCR- and IHC-positive areas than the other animals.
Resumo:
Porphyrias are a family of inherited diseases, each associated with a partial defect in one of the enzymes of the heme biosynthetic pathway. In six of the eight porphyrias described, the main clinical manifestation is skin photosensitivity brought about by the action of light on porphyrins, which are deposited in the upper epidermal layer of the skin. Porphyrins absorb light energy intensively in the UV region, and to a lesser extent in the long visible bands, resulting in transitions to excited electronic states. The excited porphyrin may react directly with biological structures (type I reactions) or with molecular oxygen, generating excited singlet oxygen (type II reactions). Besides this well-known photodynamic action of porphyrins, a novel light-independent effect of porphyrins has been described. Irradiation of enzymes in the presence of porphyrins mainly induces type I reactions, although type II reactions could also occur, further increasing the direct non-photodynamic effect of porphyrins on proteins and macromolecules. Conformational changes of protein structure are induced by porphyrins in the dark or under UV light, resulting in reduced enzyme activity and increased proteolytic susceptibility. The effect of porphyrins depends not only on their physico-chemical properties but also on the specific site on the protein on which they act. Porphyrin action alters the functionality of the enzymes of the heme biosynthetic pathway exacerbating the metabolic deficiencies in porphyrias. Light energy absorption by porphyrins results in the generation of oxygen reactive species, overcoming the protective cellular mechanisms and leading to molecular, cell and tissue damage, thus amplifying the porphyric picture.
Resumo:
Since the discovery of the up-conversion phenomenon, there has been an ever increasing interest in up-converting phosphors in which the absorption of two or more low energy photons is followed by emission of a higher energy photon. Most up-conversion luminescence materials operate by using a combination of a trivalent rare earth (lanthanide) sensitizer (e.g. Yb or Er) and an activator (e.g. Er, Ho, Tm or Pr) ion in a crystal lattice. Up-converting phosphors have a variety of potential applications as lasers and displays as well as inks for security printing (e.g. bank notes and bonds). One of the most sophisticated applications of lanthanide up-conversion luminescence is probably in medical diagnostics. However, there are some major problems in the use of photoluminescence based on the direct UV excitation in immunoassays. Human blood absorbs strongly UV radiation as well as the emission of the phosphor in the visible. A promising way to overcome the problems arising from the blood absorption is to use a long wavelength excitation and benefit from the up-conversion luminescence. Since there is practically no absorption by the whole-blood in the near IR region, it has no capability for up-conversion in the excitation wavelength region of the conventional up-converting phosphor based on the Yb3+ (sensitizer) and Er3+ (activator) combination. The aim of this work was to prepare nanocrystalline materials with high red (and green) up-conversion luminescence efficiency for use in quantitative whole-blood immunoassays. For coupling to biological compounds, nanometer-sized (crystallite size below 50 nm) up-converting phosphor particles are required. The nanocrystalline ZrO2:Yb3+,Er3+, Y2O2S:Yb3+,Er3+, NaYF4:Yb3+,Er3+ and NaRF4-NaR’F4 (R: Y, Yb, Er) materials, prepared with the combustion, sol-gel, flux, co-precipitation and solvothermal synthesis, were studied using the thermal analysis, FT-IR spectroscopy, transmission electron microscopy, EDX spectroscopy, XANES/EXAFS measurements, absorption spectroscopy, X-ray powder diffraction, as well as up-conversion and thermoluminescence spectroscopies. The effect of the impurities of the phosphors, crystallite size, as well as the crystal structure on the up-conversion luminescence intensity was analyzed. Finally, a new phenomenon, persistent up-conversion luminescence was introduced and discussed. For efficient use in bioassays, more work is needed to yield nanomaterials with smaller and more uniform crystallite sizes. Surface modifications need to be studied to improve the dispersion in water. On the other hand, further work must be carried out to optimize the persistent up-conversion luminescence of the nanomaterials to allow for their use as efficient immunoassay nanomaterials combining the advantages of both up-conversion and persistent luminescence.
Resumo:
Methicillin-resistant Staphylococcus aureus (MRSA) has been the cause of major outbreaks and epidemics among hospitalized patients, with high mortality and morbidity rates. We studied the genomic diversity of MRSA strains isolated from patients with nosocomial infection in a University Hospital from 1991 to 2001. The study consisted of two periods: period I, from 1991 to 1993 and period II from 1995 to 2001. DNA was typed by pulsed-field gel electrophoresis and the similarity among the MRSA strains was determined by cluster analysis. During period I, 73 strains presented five distinctive DNA profiles: A, B, C, D, and E. Profile A was the most frequent DNA pattern and was identified in 55 (75.3%) strains; three closely related and four possibly related profiles were also identified. During period II, 80 (68.8%) of 117 strains showed the same endemic profile A identified during period I, 18 (13.7%) closely related profiles and 18 (13.7%) possibly related profiles and, only one strain presented an unrelated profile. Cluster analysis showed a 96% coefficient of similarity between profile A from period I and profile A from period II, which were considered to be from the same clone. The molecular monitoring of MRSA strains permitted the determination of the clonal dissemination and the maintenance of a dominant endemic strain during a 10-year period and the presence of closely and possibly related patterns for endemic profile A. However, further studies are necessary to improve the understanding of the dissemination of the endemic profile in this hospital.
Resumo:
The phyllosphere, i.e., the aerial parts of the plant, provides one of the most important niches for microbial colonization. This niche supports the survival and, often, proliferation of microbes such as fungi and bacteria with diverse lifestyles including epiphytes, saprophytes, and pathogens. Although most microbes may complete the life cycle on the leaf surface, pathogens must enter the leaf and multiply aggressively in the leaf interior. Natural surface openings, such as stomata, are important entry sites for bacteria. Stomata are known for their vital role in water transpiration and gas exchange between the plant and the environment that is essential for plant growth. Recent studies have shown that stomata can also play an active role in limiting bacterial invasion of both human and plant pathogenic bacteria as part of the plant innate immune system. As counter-defense, plant pathogens such as Pseudomonas syringae pv tomato (Pst) DC3000 use the virulence factor coronatine to suppress stomate-based defense. A novel and crucial early battleground in host-pathogen interaction in the phyllosphere has been discovered with broad implications in the study of bacterial pathogenesis, host immunity, and molecular ecology of bacterial diseases.
Resumo:
5-Bromo-2’-deoxyuridine (BrdUrd) has long been known to interfere with cell differentiation. We found that treatment ofBradysia hygida larvae with BrdUrd during DNA puff anlage formation in the polytene chromosomes of the salivary gland S1 region noticeably affects anlage morphology. However, it does not affect subsequent metamorphosis to the adult stage. The chromatin of the chromosomal sites that would normally form DNA puffs remains very compact and DNA puff expansion does not occur with administration of 4 to 8 mM BrdUrd. Injection of BrdUrd at different ages provoked a gradient of compaction of the DNA puff chromatin, leading to the formation of very small to almost normal puffs. By immunodetection, we show that the analogue is preferentially incorporated into the DNA puff anlages. When BrdUrd is injected in a mixture with thymidine, it is not incorporated into the DNA, and normal DNA puffs form. Therefore, incorporation of this analogue into the amplified DNA seems to be the cause of this extreme compaction. Autoradiographic experiments and silver grains counting showed that this treatment decreases the efficiency of RNA synthesis at DNA puff anlages.
Resumo:
Cardiovascular disease is one of the leading causes of death worldwide, and evidence indicates a correlation between the inflammatory process and cardiac dysfunction. Selective inhibitors of cyclooxygenase-2 (COX-2) enzyme are not recommended for long-term use because of potentially severe side effects to the heart. Considering this and the frequent prescribing of commercial celecoxib, the present study analyzed cellular and molecular effects of 1 and 10 µM celecoxib in a cell culture model. After a 24-h incubation, celecoxib reduced cell viability in a dose-dependent manner as also demonstrated in MTT assays. Furthermore, reverse transcription-polymerase chain reaction analysis showed that the drug modulated the expression level of genes related to death pathways, and Western blot analyses demonstrated a modulatory effect of the drug on COX-2 protein levels in cardiac cells. In addition, the results demonstrated a downregulation of prostaglandin E2 production by the cardiac cells incubated with celecoxib, in a dose-specific manner. These results are consistent with the decrease in cell viability and the presence of necrotic processes shown by Fourier transform infrared analysis, suggesting a direct correlation of prostanoids in cellular homeostasis and survival.
Resumo:
Pisciculture is an economic activity that is steadily growing in the state of Parana, Brazil, and Nile tilapia (Oreochromis niloticus) is one of the widely cultivated species in this state. Tilapia is not only a very nutritious food, but also an important indicator of environmental contamination. This study aimed to verify contamination by cadmium, copper and lead in tilapia fillets, and to compare the found values to international legislations. Were collected 135 samples of tilapia fillets, between July 2006 and May 2007, in three fish stores located in regions west and north of Paraná State. Samples of tilapia fillet were analyzed in relation to the presence of cadmiun, lead and copper, using atomic absorption spectrophotometry. Lead has not been detected in the analyses. Cadmium has been detected in three samples, on concentrations of 0.012 µg.g-1, 0.011 µg.g-1 and 0.014 µg.g-1. Copper has been detected in all fillets, and the average concentration of each cold storage plant was of 0.122 µg.g-1, 0.106 µg.g-1 and 0.153 µg.g-1. The concentrations found in this study are within the limits allowed by both the European and the Australian legislations.
Resumo:
Living nature consists of countless organisms, which are classified into millions of species. These species interact in many ways; for example predators when foraging on their prey, insect larvae consuming plants, and pathogenic bacteria drifting into humans. In addition, abiotic nature has a great initiative impact on life through many factors (including sunlight, ambient temperature, and water. In my thesis, I have studied interactions among different life forms in multifaceted ways. The webs of these interactions are commonly referred to as food webs, describing feeding relationships between species or energy transfer from one trophic level to another. These ecological interactions – whether they occur between species, between individuals, or between microorganisms within an individual – are among the greatest forces affecting natural communities. Relationships are tightly related to biological diversity, that is, species richness and abundances. A species is called a node in food web vocabulary, and its interactions to other species are called links. Generally, Artic food webs are considered to be loosely linked, simple structures. This conception roots into early modern food webs, where insects and other arthropods, for example, were clumped under one node. However, it has been shown that arthropods form the greatest part of diversity and biomass both in the tropics and in Arctic areas. Earlier challenges of revealing the role of insects and microorganisms in interactions webs have become possible with the help of recent advances in molecular techniques. In the first chapter, I studied the prey diversity of a common bat, Myotis daubentonii, in southwestern Finland. My results proved M. daubentonii being a versatile predator whose diet mainly consists of aquatic insects, such as chironomid midges. In the second chapter, I expanded the view to changes in seasonal and individual-based variation in the diet of M. daubentonii including the relationship between available and observed prey. I found out that chironomids remain the major prey group even though their abundance decreases in proportion to other insect groups. Diet varied a lot between individuals, although the differences were not statistically significant. The third chapter took the study to a large network in Greenland. I showed that Artic food webs are very complex when arthropods are taken into account. In the fourth chapter, I examined the bacterial flora of M. daubentonii and surveyed the zoonotic potential of these bacteria. I found Bartonella bacteria, of which one was described as a new species named after the locality of discovery. I have shown in my thesis that Myotis daubentonii as a predator links many insect species as well as terrestrial and aquatic environments. Moreover, I have exposed that Arctic food webs are complex structures comprising of many densely linked species. Finally, I demonstrated that the bacterial flora of bats includes several previously unknown species, some of which could possibly turn in to zoonosis. To summarize, molecular methods have untied several knots in biological research. I hope that this kind of increasing knowledge of the surrounding nature makes us further value all the life forms on earth.
Resumo:
The increased awareness and evolved consumer habits have set more demanding standards for the quality and safety control of food products. The production of foodstuffs which fulfill these standards can be hampered by different low-molecular weight contaminants. Such compounds can consist of, for example residues of antibiotics in animal use or mycotoxins. The extremely small size of the compounds has hindered the development of analytical methods suitable for routine use, and the methods currently in use require expensive instrumentation and qualified personnel to operate them. There is a need for new, cost-efficient and simple assay concepts which can be used for field testing and are capable of processing large sample quantities rapidly. Immunoassays have been considered as the golden standard for such rapid on-site screening methods. The introduction of directed antibody engineering and in vitro display technologies has facilitated the development of novel antibody based methods for the detection of low-molecular weight food contaminants. The primary aim of this study was to generate and engineer antibodies against low-molecular weight compounds found in various foodstuffs. The three antigen groups selected as targets of antibody development cause food safety and quality defects in wide range of products: 1) fluoroquinolones: a family of synthetic broad-spectrum antibacterial drugs used to treat wide range of human and animal infections, 2) deoxynivalenol: type B trichothecene mycotoxin, a widely recognized problem for crops and animal feeds globally, and 3) skatole, or 3-methyindole is one of the two compounds responsible for boar taint, found in the meat of monogastric animals. This study describes the generation and engineering of antibodies with versatile binding properties against low-molecular weight food contaminants, and the consecutive development of immunoassays for the detection of the respective compounds.
Resumo:
The underwater light field is an important environmental variable as it, among other things, enables aquatic primary production. Although the portion of solar radiation that is referred to as visible light penetrates water, it is restricted to a limited surface water layer because of efficient absorption and scattering processes. Based on the varying content of optical constituents in the water, the efficiency of light attenuation changes in many dimensions and over various spatial and temporal scales. This thesis discusses the underwater light dynamics of a transitional coastal archipelago in south-western Finland, in the Baltic Sea. While the area has long been known to have a highly variable underwater light field, quantified knowledge on the phenomenon has been scarce, patchy, or non-existent. This thesis focuses on the variability in the underwater light field through euphotic depths (1% irradiance remaining), which were derived from in situ measurements of vertical profiles of photosynthetically active radiation (PAR). Spot samples were conducted in the archipelago of south-western Finland, mainly during the ice-free growing seasons of 2010 and 2011. In addition to quantifying both the seasonal and geographical patterns of euphotic depth development, the need and usability of underwater light information are also discussed. Light availability was found to fluctuate in multiple dimensions and scales. The euphotic depth was shown to have combined spatio-temporal dynamics rather than separate changes in spatial and temporal dimensions. Such complexity in the underwater light field creates challenges in data collection, as well as in its utilisation. Although local information is needed, in highly variable conditions spot sampled information may only poorly represent its surroundings. Moreover, either temporally or spatially limited sampling may cause biases in understanding underwater light dynamics. Consequently, the application of light availability data, for example in ecological modelling, should be made with great caution.
Resumo:
The overall objective of this study was to investigate factors associated with long-term survival in axillary node negative (ANN) breast cancer patients. Clinical and biological factors included stage, histopathologic grade, p53 mutation, Her-2/neu amplification, estrogen receptor status (ER), progesterone receptor status (PR) and vascular invasion. Census derived socioeconomic (SES) indicators included median individual and household income, proportions of university educated individuals, housing type, "incidence" of low income and an indicator of living in an affluent neighbourhood. The effects of these measures on breast cancer-specific survival and competing cause survival were investigated. A cohort study examining survival among axillary node negative (ANN) breast cancer patients in the greater Toronto area commenced in 1 989. Patients were followed up until death, lost-to-follow up or study termination in 2004. Data were collected from several sources measuring patient demographics, clinical factors, treatment, recurrence of disease and survival. Census level SES data were collected using census geo-coding of patient addresses' at the time of diagnosis. Additional survival data were acquired from the Ontario Cancer Registry to enhance and extend the observation period of the study. Survival patterns were examined using KaplanMeier and life table procedures. Associations were examined using log-rank and Wilcoxon tests of univariate significance. Multivariate survival analyses were perfonned using Cox proportional hazards models. Analyses were stratified into less than and greater than 5 year survival periods to observe whether known markers of short-tenn survival were also associated with reductions in long-tenn survival among breast cancer patients. The 15 year survival probabilities in this cohort were: for breast cancerspecific survival 0.88, competing causes survival 0.89 and for overall survival 0.78. Estrogen receptor (ER) and progesterone receptor (PR) status (Hazard Ratio (HR) ERIPR- versus ER+/PR+, 8.15,95% CI, 4.74, 14.00), p53 mutation (HR, 3.88, 95% CI, 2.00, 7.53) and Her-2 amplification (HR, 2.66, 95% CI, 1.36, 5.19) were associated with significant reductions in short-tenn breast cancer-specific survival «5 years following diagnosis), however, not with long-term survival in univariate analyses. Stage, histopathologic grade and ERiPR status were the clinicallbiologieal factors that were associated with short-term breast cancer specific survival in multivariate results. Living in an affluent neighbourhood (top quintile of median household income compared to the rest of the population) was associated with the largest significant increase in long-tenn breast cancer-specific survival after adjustment for stage, histopathologic grade and treatment (HR, 0.36, 95% CI, 0.12, 0.89).
Resumo:
The preparation and characterization of two families of building blocks for molecule-based magnetic and conducting materials are described in three projects. In the first project the synthesis and characterization of three bis-imine ligands LI - L3 is reported. Coordination of LI to a series of metal salts afforded the five novel coordination complexes Sn(L4)C4 (I), [Mn(L4)(u-CI)(CI)(EtOH)h (II), [CU(L4)(u-sal) h(CI04)2 (sal = salicylaldehyde anion) (III), [Fe(Ls)2]CI (IV) and [Fe(LI)h(u-O) (V). All complexes have been structurally and magnetically characterized. X-ray diffraction studies revealed that, upon coordination to Lewis acidic metal salts, the imine bonds of LI are susceptible to nucleophilic attack. As a consequence, the coordination complexes (I) - (IV) contain either the cyclised ligand L4 or hydrolysed ligand Ls. In contrast, the dimeric Fe3+ complex (V) comprises two intact ligand LI molecules. In. this complex, the ligand chelates two Fe(III) centres in a bis-bidentate manner through the lone pairs of a phenoxy oxygen and an imine nitrogen atom. Magnetic studies of complexes (II-V) indicate that the dominant interactions between neighbouring metal centres in all of the complexes are antiferromagnetic. In the second project the synthesis and characterization two families of TTF donors, namely the cyano aryl compounds (VI) - (XI) and the his-aryl TTF derivatives (XII) - (XIV) are reported. The crystal structures of compounds (VI), (VII), (IX) and (XII) exhibit regular stacks comprising of neutral donors. The UV -Vis spectra of compounds (VI) - (XIV) present an leT band, indicative of the transfer of electron density from the TTF donors to the aryl acceptor molecules. Chemical oxidation of donors (VI), (VII), (IX) and (XII) with iodine afforded a series of CT salts that where possible have been characterized by single crystal X -ray diffraction. Structural studies showed that the radical cations in these salts are organized in stacks comprising of dimers of oxidized TTF donors. All four salts behave as semiconductors, displaying room temperature conductivities ranging from 1.852 x 10-7 to 9.620 X 10-3 Scm-I. A second series of CT salts were successfully prepared via the technique of electrocrystallization. Following this methodology, single crystals of two CT salts were obtained. The single crystal X-ray structures of both salts are isostructural, displaying stacks formed by trimers of oxidized donors. Variable temperature conductivity measurements carried out on this series of CT salts reveal they also are semiconductors with conductivities ranging from 2.94 x 10-7 to 1.960 X 10-3 S em-I at room temperature. In the third project the synthesis and characterization of a series of MII(hfac)2 coordination complexes of donor ligand (XII) where M2+ = Co2+, Cu2+, Ni2+ and Zn2+ are reported. These complexes crystallize in a head-to-tail arrangement of TTF donor and bipyridine moieties, placing the metal centres and hfac ligands are located outside the stacks. Magnetic studies of the complexes (XV) - (XVIII) indicate that the bulky hfac ligands prevent neighbouring metal centres from assembling in close proximity, and thus they are magnetically isolated.
Resumo:
Rapport de recherche présenté à la Faculté des arts et des sciences en vue de l'obtention du grade de Maîtrise en sciences économiques.