980 resultados para Molecular Sequence Data.
Resumo:
Superantigens (SAg) encoded by endogenous mouse mammary tumor viruses (Mtv) interact with the V beta domain of the T cell receptor (TcR-V beta). Presentation of Mtv SAg can lead to stimulation and/or deletion of the reactive T cells, but little is known about the quantitative aspects of SAg presentation. Although monoclonal antibodies have been raised against Mtv SAg, they have not been useful in quantitating SAg protein, which is present in very low amounts in normal cells. Alternative attempts to quantitate Mtv SAg mRNA expression are complicated by the fact that Mtv transcription occurs from multiple loci and in different overlapping reading frames. In this report we describe a novel competitive polymerase chain reaction assay which allows the locus-specific quantitation of SAg expression at the mRNA level in lymphocyte subsets from mouse strains with multiple endogenous Mtv loci. In B cells as well as T cells (CD4+ or CD8+), Mtv-6 SAg is expressed at the highest levels, followed by Mtv-7 SAg and (to a much lesser extent) Mtv-8,9. Consistent with functional Mtv-7 SAg presentation studies, we find that Mtv-7 SAg expression is higher in B cells than in CD8+ T cells and very low in the CD4+ subset. The overall hierarchy in Mtv SAg expression (i.e. Mtv-6 > Mtv-7 > Mtv 8,9) was also observed for mRNA isolated from neonatal thymus. Furthermore, the kinetics of intrathymic deletion of the corresponding TcR-V beta domains during ontogeny correlated with the levels of Mtv SAg expression. Collectively our data suggest that T cell responses to Mtv SAg are largely controlled by SAg expression levels on presenting cells.
Resumo:
The specificity of recognition of pMHC complexes by T lymphocytes is determined by the V regions of the TCR alpha- and beta-chains. Recent experimental evidence has suggested that Ag-specific TCR repertoires may exhibit a more V alpha- than V beta-restricted usage. Whether V alpha usage is narrowed during immune responses to Ag or if, on the contrary, restricted V alpha usage is already defined at the early stages of TCR repertoire selection, however, has remained unexplored. Here, we analyzed V and CDR3 TCR regions of single circulating naive T cells specifically detected ex vivo and isolated with HLA-A2/melan-A peptide multimers. Similarly to what was previously observed for melan-A-specific Ag-experienced T cells, we found a relatively wide V beta usage, but a preferential V alpha 2.1 usage. Restricted V alpha 2.1 usage was also found among single CD8(+) A2/melan-A multimer(+) thymocytes, indicating that V alpha-restricted selection takes place in the thymus. V alpha 2.1 usage, however, was independent from functional avidity of Ag recognition. Thus, interaction of the pMHC complex with selected V alpha-chains contributes to set the broad Ag specificity, as underlined by preferential binding of A2/melan-A multimers to V alpha 2.1-bearing TCRs, whereas functional outcomes result from the sum of these with other interactions between pMHC complex and TCR.
Resumo:
The molecular basis underlying the aberrant DNA-methylation patterns in human cancer is largely unknown. Altered DNA methyltransferase (DNMT) activity is believed to contribute, as DNMT expression levels increase during tumorigenesis. Here, we present evidence that the expression of DNMT3b is post-transcriptionally regulated by HuR, an RNA-binding protein that stabilizes and/or modulates the translation of target mRNAs. The presence of a putative HuR-recognition motif in the DNMT3b 3'UTR prompted studies to investigate if this transcript associated with HuR. The interaction between HuR and DNMT3b mRNA was studied by immunoprecipitation of endogenous HuR ribonucleoprotein complexes followed by RT-qPCR detection of DNMT3b mRNA, and by in vitro pulldown of biotinylated DNMT3b RNAs followed by western blotting detection of HuR. These studies revealed that binding of HuR stabilized the DNMT3b mRNA and increased DNMT3b expression. Unexpectedly, cisplatin treatment triggered the dissociation of the [HuR-DNMT3b mRNA] complex, in turn promoting DNMT3b mRNA decay, decreasing DNMT3b abundance, and lowering the methylation of repeated sequences and global DNA methylation. In summary, our data identify DNMT3b mRNA as a novel HuR target, present evidence that HuR affects DNMT3b expression levels post-transcriptionally, and reveal the functional consequences of the HuR-regulated DNMT3b upon DNA methylation patterns.
Resumo:
Cervical cancer results from cervical infection by human papillomaviruses (HPVs), especially HPV16. An effective vaccine against these HPVs is expected to have a dramatic impact on the incidence of this cancer and its precursor lesions. The leading candidate, a subunit prophylactic HPV virus-like particle (VLP) vaccine, can protect women from HPV infection. An alternative improved vaccine that avoids parenteral injection, that is efficient with a single dose, and that induces mucosal immunity might greatly facilitate vaccine implementation in different settings. In this study, we have constructed a new generation of recombinant Salmonella organisms that assemble HPV16 VLPs and induce high titers of neutralizing antibodies in mice after a single nasal or oral immunization with live bacteria. This was achieved through the expression of a HPV16 L1 capsid gene whose codon usage was optimized to fit with the most frequently used codons in Salmonella. Interestingly, the high immunogenicity of the new recombinant bacteria did not correlate with an increased expression of L1 VLPs but with a greater stability of the L1-expressing plasmid in vitro and in vivo in absence of antibiotic selection. Anti-HPV16 humoral and neutralizing responses were also observed with different Salmonella enterica serovar Typhimurium strains whose attenuating deletions have already been shown to be safe after oral vaccination of humans. Thus, our findings are a promising improvement toward a vaccine strain that could be tested in human volunteers.
Resumo:
The S. pombe cdc15 gene is essential for cell division. cdc15ts mutants do not form a septum, but growth and nuclear division continue, leading to formation of multinucleate cells. The earliest step in septum formation and cytokinesis, rearrangement of actin to the center of the cell, is associated with appearance of hypophosphorylated cdc15p and formation of a cdc15p ring, which colocalizes with actin. Loss of cdc15p function impairs formation of the actin ring. The abundance of cdc15 mRNA varies through the cell division cycle, peaking in early mitosis before septation. Expression of cdc15 in G2-arrested cells induces actin rearrangement to the center of the cell. These data implicate cdc15p as a key element in mediating the cytoskeletal rearrangements required for cytokinesis.
Resumo:
A cross-sectional analysis of stored Ziehl-Neelsen (ZN)-stained sputum smear slides (SSS) obtained from two public tuberculosis referral laboratories located in Juiz de Fora, Minas Gerais, was carried out to distinguish Mycobacterium bovis from other members of the Mycobacterium tuberculosis complex (MTC). A two-step approach was used to distinguish M. bovis from other members of MTC: (i) oxyR pseudogene amplification to detect MTC and, subsequently, (ii) allele-specific sequencing based on the polymorphism at position 285 of this gene. The oxyR pseudogene was successfully amplified in 100 of 177 (56.5%) SSS available from 99 individuals. No molecular profile of M. bovis was found. Multivariate analysis indicated that acid-fast bacilli (AFB) results and the source laboratory were associated (p < 0.05) with oxyR pseudogene amplification. SSS that were AFB++ SSS showed more oxyR pseudogene amplification than those with AFB0, possibly due to the amount of DNA. One of the two source laboratories presented a greater chance of oxyR pseudogene amplification, suggesting that differences in sputum conservation between laboratories could have influenced the preservation of DNA. This study provides evidence that stored ZN-SSS can be used for the molecular detection of MTC.
Resumo:
Peroxisome proliferator-activated receptor (PPARs) are members of the nuclear receptor superfamily. For transcriptional activation of their target genes, PPARs heterodimerize with the retinoid-X receptor (RXR). The convergence of the PPAR and RXR signaling pathways has been shown to have an important function in lipid metabolism. The promoter of the gene encoding the acyl-coenzyme-A oxidase (ACO), the rate-limiting enzyme in peroxisomal beta-oxidation of fatty acids, is a target site of PPAR action. In this study, we examined the role and the contribution of both cis-and trans-acting factors in the transcriptional regulation of this gene using transient transfections in insect cells. We identified several functional cis-acting elements present in the promoter of the ACO gene and established that PPAR-dependent as well as PPAR-independent mechanisms can activate the ACO promoter in these cells. We show that the PPAR/RXR heterodimer exerts its effect through two response elements within the ACO promoter, in synergy with the transcription factor Sp1 via five Sp1-binding sites. Furthermore, this functional interaction also occurs when Sp1 is co-expressed with PPAR or RXR alone, indicating that activation can occur independently of PPAR/RXR heterodimers.
Evaluation of two long synthetic merozoite surface protein 2 peptides as malaria vaccine candidates.
Resumo:
Merozoite surface protein 2 (MSP2) is a promising vaccine candidate against Plasmodium falciparum blood stages. A recombinant 3D7 form of MSP2 was a subunit of Combination B, a blood stage vaccine tested in the field in Papua New Guinea. A selective effect in favour of the allelic family not represented by the vaccine argued for a MSP2 vaccine consisting of both dimorphic variants. An alternative approach to recombinant manufacture of vaccines is the production of long synthetic peptides (LSP). LSP exceeding a length of well over 100 amino acids can now be routinely synthesized. Synthetic production of vaccine antigens cuts the often time-consuming steps of protein expression and purification short. This considerably reduces the time for a candidate to reach the phase of clinical trials. Here we present the evaluation of two long synthetic peptides representing both allelic families of MSP2 as potential vaccine candidates. The constructs were well recognized by human immune sera from different locations and different age groups. Furthermore, peptide-specific antibodies in human immune sera were associated with protection from clinical malaria. The synthetic fragments share major antigenic properties with native MSP2. Immunization of mice with these antigens yielded high titre antibody responses and monoclonal antibodies recognized parasite-derived MSP2. Our results justify taking these candidate poly-peptides into further vaccine development.
Resumo:
Carcinoembryonic antigen (CEA) is a well-known tumor marker, consisting of a single heavily glycosylated polypeptide chain (mol. wt 200 kD), bound to the cell surface by a phosphatidylinositol-glycan anchor. The hydrophobic domain, encoded by the 3' end of the open reading frame of the CEA gene is not present in the mature protein. This domain is assumed to play an important role in the targeting and attachment of CEA to the cell surface. To verify this hypothesis, a recombinant CEA cDNA lacking the 78 b.p. of the 3' region, encoding the 26 a.a. hydrophobic domain, was prepared in a Rc/CMV expression vector containing a neomycin resistance gene. The construct was transfected by the calcium phosphate technique into CEA-negative human and rat colon carcinoma cell lines. Geneticin-resistant transfectants were screened for the presence of CEA in the supernatant and positive clones were isolated. As determined by ELISA, up to 13 micrograms of recombinant CEA per 10(6) cells was secreted within 72 hr by the human transfected cells and about 1 microgram by the rat cells. For comparison, two human carcinoma cell lines, CO112 and LS174T, selected for high CEA expression, shed about 45 and 128 ng per 10(6) cells within 72 hr, respectively. Western blot analysis showed that the size of the recombinant CEA secreted by the transfected human cells is identical to that of reference CEA purified from human colon carcinomas metastases (about 200 kD). The recombinant CEA synthesized by the transfected rat carcinoma cells has a smaller size (about 144 kD, possibly due to incomplete glycosylation), as has already been observed for CEA produced by rat colon carcinoma cells transfected with full-length CEA cDNA. The 100-fold increase in secretion of rCEA encoded by truncated CEA cDNA transfected in human cells confirms the essential role of this domain in the targeting and anchoring of the glycoprotein. These results suggest a new approach for the in vitro production of large amounts of CEA needed in research laboratories and for immunoassay kits.
Resumo:
Since Staphylococcus aureus expresses multiple pathogenic factors, studying their individual roles in single-gene-knockout mutants is difficult. To circumvent this problem, S. aureus clumping factor A (clfA) and fibronectin-binding protein A (fnbA) genes were constitutively expressed in poorly pathogenic Lactococcus lactis using the recently described pOri23 vector. The recombinant organisms were tested in vitro for their adherence to immobilized fibrinogen and fibronectin and in vivo for their ability to infect rats with catheter-induced aortic vegetations. In vitro, both clfA and fnbA increased the adherence of lactococci to their specific ligands to a similar extent as the S. aureus gene donor. In vivo, the minimum inoculum size producing endocarditis in > or =80% of the rats (80% infective dose [ID80]) with the parent lactococcus was > or =10(7) CFU. In contrast, clfA-expressing and fnbA-expressing lactococci required only 10(5) CFU to infect the majority of the animals (P < 0.00005). This was comparable to the infectivities of classical endocarditis pathogens such as S. aureus and streptococci (ID80 = 10(4) to 10(5) CFU) in this model. The results confirmed the role of clfA in endovascular infection, but with a much higher degree of confidence than with single-gene-inactivated staphylococci. Moreover, they identified fnbA as a critical virulence factor of equivalent importance. This was in contrast to previous studies that produced controversial results regarding this very determinant. Taken together, the present observations suggest that if antiadhesin therapy were to be developed, at least both of the clfA and fnbA products should be blocked for the therapy to be effective.
Resumo:
Immune-mediated nephritis contributes to disease in systemic lupus erythematosus, Goodpasture syndrome (caused by antibodies specific for glomerular basement membrane [anti-GBM antibodies]), and spontaneous lupus nephritis. Inbred mouse strains differ in susceptibility to anti-GBM antibody-induced and spontaneous lupus nephritis. This study sought to clarify the genetic and molecular factors that maybe responsible for enhanced immune-mediated renal disease in these models. When the kidneys of 3 mouse strains sensitive to anti-GBM antibody-induced nephritis were compared with those of 2 control strains using microarray analysis, one-fifth of the underexpressed genes belonged to the kallikrein gene family,which encodes serine esterases. Mouse strains that upregulated renal and urinary kallikreins exhibited less evidence of disease. Antagonizing the kallikrein pathway augmented disease, while agonists dampened the severity of anti-GBM antibody-induced nephritis. In addition, nephritis-sensitive mouse strains had kallikrein haplotypes that were distinct from those of control strains, including several regulatory polymorphisms,some of which were associated with functional consequences. Indeed, increased susceptibility to anti-GBM antibody-induced nephritis and spontaneous lupus nephritis was achieved by breeding mice with a genetic interval harboring the kallikrein genes onto a disease-resistant background. Finally, both human SLE and spontaneous lupus nephritis were found to be associated with kallikrein genes, particularly KLK1 and the KLK3 promoter, when DNA SNPs from independent cohorts of SLE patients and controls were compared. Collectively, these studies suggest that kallikreins are protective disease-associated genes in anti-GBM antibody-induced nephritis and lupus.
Resumo:
Members of the leucine-rich repeat protein family are involved in diverse functions including protein phosphatase 2-inhibition, cell cycle regulation, gene regulation and signalling pathways. A novel Schistosoma mansoni gene, called SmLANP, presenting homology to various genes coding for proteins that belong to the super family of leucine-rich repeat proteins, was characterized here. SmLANP was 1184bp in length as determined from cDNA and genomic sequences and encoded a 296 amino acid open reading frame that spanning from 6 to 894bp. The predicted amino acid sequence had a calculated molecular weight of 32kDa. Analysis of the predicted sequence indicated the presence of 3 leucine-rich domains (LRR) located in the N-terminal region and an aspartic acid rich region in the C-terminal end. SmLANP transcript is expressed in all stages of the S. mansoni life cycle analyzed, exhibiting the highest expression level in males. The SmLANP protein was expressed in a GST expression system and antibodies raised in mice against the recombinant protein. By immunolocalization assay, using adult worms, it was shown that the protein is mainly present in the cell nucleus through the whole body and strongly expressed along the tegument cell body nuclei of adult worms. As members of this family are usually involved in protein-protein interaction, a yeast two hybrid assay was conducted to identify putative binding partners for SmLANP. Thirty-six possible partners were identified, and a protein ATP synthase subunit alpha was confirmed by pull down assays, as a binding partner of the SmLANP protein.
Resumo:
Lymphocytic choriomeningitis virus (LCMV) was detected in 2 patients with acute meningitis in southern Spain within a 3-year period. Although the prevalence of LCMV infection was low (2 [1.3%] of 159 meningitis patients), it represents 2.9% of all pathogens detected. LCMV is a noteworthy agent of neurologic illness in immunocompetent persons.
Resumo:
A protein from Arabidopsis thaliana (L.) Heynh. showing homology to animal proteins of the NaPi-1 family, involved in the transport of inorganic phosphate, chloride, glutamate and sialic acid, has been characterized. This protein, named ANTR2 (for anion transporters) was shown by chloroplast subfractionation to be localized to the plastid inner envelope in both A. thaliana and Spinacia oleracea (L.). Immunolocalization revealed that ANTR2 was expressed in the leaf mesophyll cells as well as in the developing embryo at the upturned-U stage. Five additional homologues of ANTR2 are found in the Arabidopsis genome, of which one was shown by green fluorescent protein (GFP) fusion to be also located in the chloroplast. All ANTR proteins share homology to the animal NaPi-1 family, as well as to other organic-anion transporters that are members of the Anion:Cation Symporter (ACS) family, and share the main features of transporters from this family, including the presence of 12 putative transmembrane domains and of a 7-amino acid motif in the fourth putative transmembrane domain. ANTR2 thus represent a novel protein of the plastid inner envelope that is likely to be involved in anion transport.