1000 resultados para Molecular Motors
Resumo:
Background Progress in identifying genetic factors protective against alcohol dependence (AlcD) requires a paradigm shift in psychiatric epidemiology. Aims To integrate analysis of research into the genetics of alcoholism. Method Data from prospective questionnaire and interview surveys of the Australian twin panel, and from a subsample who underwent alcohol challenge, were analysed. Results In men, effects of alcohol dehydrogenase ADH2*1/*2 genotype or high alcohol sensitivity (risk-decreasing), and of history of childhood conduct disorder, or having monozygotic co-twin or twin sister with AlcD (risk-increasing) were significant and comparable in magnitude. Religious affiliation (Anglican versus other) was associated with the ADH2 genotype, but did not explain the associations with AlcD symptoms. No protective effect of the ADH2*1/*2 genotype was observed in women. Conclusions The early onset and strong familial aggregation of AlcD, and opportunity for within-family tests of genetic association to avoid confounding effects, make epidemiological family studies of adolescents and young adults and their families a priority.
Resumo:
Published results on the inhibitory effects of small cosolutes on adenosine deamination by adenosine deaminase [Kurz. L. C.. Weitkamp, E., and Frieden, C. (1987) Biochemistry 26, 3027-3032; Dzingeleski, G., and Wolfenden, R. (1993) Biochemistry 32, 9143 -9147] have been reexamined. Results for sucrose, dioxane, methanol, and ethanol are shown to be qualitatively consistent with thermodynamic interpretation in terms of molecular crowding effects arising from the occurrence of a minor increase in enzyme volume and/or asymmetry during the kinetic reaction-a conformational transition that could be either preexisting or ligand induced. Direct evidence for the existence of the putative isomeric transition is provided by active enzyme gel chromatography on Sephadex G-100, which demonstrates a negative dependence of enzyme elution volume upon substrate concentration and is therefore consistent with substrate-mediated conformational changes that favor a larger (or more asymmetric) isomeric state of the enzyme. There are thus experimental grounds for adopting the present description of the inhibitory effects of unrelated cosolutes on the kinetics of adenosine deamination by adenosine deaminase in terms of thermodynamic nonideality.
Resumo:
The suitability of sedimentation equilibrium for characterizing the self-association of muscle glycogen phosphorylase b has been reappraised. Whereas sedimentation equilibrium distributions for phosphorylase b in 40 mM Hepes buffer (pH 6.8) supplemented with 1 mM AMP signify a lack of chemical equilibrium attainment, those in buffer supplemented additionally with potassium sulfate conform with the requirements of a dimerizing system in chemical as we:ll as sedimentation equilibrium. Because the rate of attainment of chemical equilibrium under the former conditions is sufficiently slow to allow resolution of the dimeric and tetrameric enzyme species by sedimentation velocity, this procedure has been used to examine the effects of thermodynamic nonideality arising from molecular crowding try trimethylamine N-oxide on the self-association behaviour of phosphorylase b. In those terms the marginally enhanced extent of phosphorylase b self-association observed in the presence of high concentrations of the cosolute is taken to imply that the effects of thermodynamic nonideality on the dimer-tetramer equilibrium are being countered by those displacing the T reversible arrow R isomerization equilibrium for dimer towards the smaller, nonassociating T state. Because the R state is the enzymically active form, an inhibitory effect is the predicted consequence of molecular crowding by high concentrations of unrelated solutes. Thermodynamic nonideality thus provides an alternative explanation for the inhibitory effects of high concentrations of glycerol, sucrose and ethylene glycol on phosphorylase b activity, phenomena that have been attributed to extremely weak interaction of these cryoprotectants with the T state of the enzyme.
Resumo:
Circulating GH consists of multiple molecular isoforms, all derived from the one gene in nonpregnant humans. To assess the effect of a potent stimulus to pituitary secretion on GH isoforms, we studied 17 aerobically trained males (age, 26.9 +/- 1.5 yr) in a randomized, repeat measures study of rest vs. exercise. Exercise consisted of continuous cycle ergometry at approximately 80% of predetermined maximal oxygen uptake for 20 min. Serum was assayed for total, pituitary, 22-kDa, recombinant, non-22-kDa, 20-kDa, and immunofunctional GH. All isoforms increased during, peaked at the end, and declined after exercise. At peak exercise, 22-kDa GH was the predominant isoform. After exercise, the ratios of non-22 kDa/total GH and 20-kDa GH/total GH increased and those of recombinant/pituitary GH decreased. The disappearance half-times for pituitary GH and 20-kDa GH were significantly longer than those for all other isoforms. We conclude that 1) all molecular isoforms of GH measured increased with and peaked at the end of acute exercise, with 22-kBa GH constituting the major isoform in serum during exercise; and 2) the proportion of non-22-kDa isoforms increased after exercise due in part to slower disappearance rates of 20-kDa and perhaps other non-22-kDa GH isoforms. It remains to be determined whether the various biological actions of different GH isoforms impact on postexercise homeostasis.
Resumo:
Despite a large number of T cells infiltrating the liver of patients with chronic hepatitis B, little is known about their complexity or specificity. To characterize the composition of these T cells involved with the pathogenesis of chronic hepatitis B (CHB), we have studied the clonality of V beta T cell receptor (TCR)-bearing populations in liver tissue by size spectratyping the complementarity-determining region (CDR3) lengths of TCR transcripts. We have also compared the CDR3 profiles of the lymphocytes infiltrating the liver with those circulating in the blood to see whether identical clonotypes may be detected that would indicate a virus-induced expansion in both compartments. Our studies show that in most of the patients examined, the T cell composition of liver infiltrating lymphocytes is highly restricted, with evidence of clonotypic expansions in 4 to 9 TCR V beta subfamilies. In contrast, the blood compartment contains an average of 1 to 3 expansions. This pattern is seen irrespective of the patient's viral load or degree of liver pathology. Although the TCR repertoire profiles between the 2 compartments are generally distinct, there is evidence of some T cell subsets being equally distributed between the blood and the liver. Finally, we provide evidence for a putative public binding motif within the CDR3 region with the sequence G-X-S, which may be involved with hepatitis B virus recognition.
Resumo:
The molecular weight changes which occur on the gamma -radiolysis of poly(dimethyl siloxane) under vacuum between 77 and 373 K and in air at 303 K have been investigated using triple detection GPC to obtain the complete molecular weight distributions for the irradiated samples and to determine the number and weight average molecular weights. The results have been interpreted in terms of the relative yields of scission and crosslinking. The total yields for crosslinking predominate over those for scission at all the temperatures investigated for radiolysis under vacuum. Based on a solid-state Si-29 NMR analysis of PDMS irradiated under vacuum at 303 K, which yielded a value of G(Y) of 1.70, the values of G(S) = 1.15 +/-0.2 and G(H) = 1.45 +/-0.2 were obtained for radiolysis under vacuum at 303 K. For radiolysis in air at 303 K, crosslinking was also predominant, but the nett yield of crosslinking was much less than that observed for radiolysis under vacuum. Under the conditions of the radiolysis in air at 303 K, because of the low solubility of oxygen in PDMS, it is likely that the radiation chemistry is limited by oxygen diffusion. (C) 2001 Elsevier Science Ltd. All rights reserved.
Characterization of C2S4.+ isomers by mass spectrometry and ab initio molecular orbital calculations
Resumo:
An improved differential display technique was used to search for changes in gene expression in the superior frontal cortex of alcoholics, A cDNA fragment was retrieved and cloned. Further sequence of the cDNA was determined from 5' RACE and screening of a human brain cDNA library. The gene was named hNP22 (human neuronal protein 22). The deduced protein sequence of hNP22 has an estimated molecular mass of 22.4 kDa with a putative calcium-binding site, and phosphorylation sites for casein kinase II and protein kinase C. The deduced amino acid sequence of hNP22 shares homology (from 67% to 42%) with four other proteins, SM22 alpha, calponin, myophilin and mp20. Sequence homology suggests a potential interaction of hNP22 with cytoskeletal elements. hNP22 mRNA was expressed in various brain regions but in alcoholics, greater mRNA expression occurred in the superior frontal cortex, but not in the primary motor cortex or cerebellum. The results suggest that hNP22 may have a role in alcohol-related adaptations and may mediate regulatory signal transduction pathways in neurones.
Resumo:
(E)-N-Hexadecyl-4-[2-(4-octadecyloxynaphthyl) ethenyl] quinolinium bromide, which has a wide-bodied chromophore and terminal n-alkyl groups, adopts a U-shape when spread at the air-water interface but a stretched conformation when compressed to ca. 35 mN m(-1). The high-pressure phase has a narrow stability range prior to collapse but may be extended from 40 to 60 mN m(-1) by co-spreading the dye in a 1 : 1 ratio with docosanoic acid. The mixed Langmuir-Blodgett (LB) film has a monolayer thickness of 4.6 +/- 0.2 nm which decreases to 2.5 +/- 0.1 nm layer(-1) in the bulk, the reduction arising from an interdigitating layer arrangement, both top and bottom. It is the first example of LB-Lego(R) and, in addition, represents the only fully interdigitating structure with non-centrosymmetrically aligned chromophores. They are tilted 38 degrees from the substrate normal. The second-harmonic intensity increases quadratically with the number of layers, i.e. as I-(N)(2 omega) = (I(1)N2)-N-2 omega, with a second-order susceptibility of chi ((2))(zzz) = 30 pm V-1 at 1064 nm for refractive indices of n(omega) = 1.55 and n(2 omega) = 1.73, d = 2.5 nm layer(-1) and phi = 38 degrees. Angle resolved X-ray photoelectron spectra (XPS) of these films provide no evidence of the bromide counterion, which suggests that it is replaced by OH 2 or HCO3-, which occur naturally in the aqueous subphase, or C21H43COO- from the co-deposited fatty acid. This probably applies to all cationic dyes deposited by the LB technique.
Resumo:
The aim of this study was to determine the mechanism by which the aged garlic extract Kyolic has a protective effect against atherosclerosis. Plasma cholesterol of rabbits fed a 1% cholesterol-enriched diet for 6 wk was not reduced by supplementation with 800 muL Kyolic/(kg body . d). In spite of this, Kyolic reduced by 64% (P < 0.05) the surface area of the thoracic aorta covered by fatty streaks and significantly reduced aortic arch cholesterol. Kyolic also significantly inhibited by 50% the development of thickened, lipid-filled lesions in preformed neointimas produced by Fogarty 2F balloon catheter injury of the right carotid artery in cholesterol-fed rabbits. In vitro studies found that Kyolic completely prevented vascular smooth muscle phenotypic change from the contractile. high volume fraction of filament (V(v)myo) state, and inhibited proliferation of smooth muscle cells in the synthetic state with a 50% effective dose (ED50) of 0.2%. Kyolic also slightly inhibited the accumulation of lipid in cultured macrophages but not smooth muscle, and had no effect an the expression of adhesion molecules on the surface of the endothelium or the adherence of leukocytes. It is concluded that Kyolic exerts antiatherogenic effects through inhibition of smooth muscle phenotypic change and proliferation, and by another (unclarified) effect on lipid accumulation in the artery wall.
Resumo:
The discovery of periodic mesoporous MCM-41 and related molecular sieves has attracted significant attention from a fundamental as well as applied perspective. They possess well-defined cylindrical/hexagonal mesopores with a simple geometry, tailored pore size, and reproducible surface properties. Hence, there is an ever-growing scientific interest in the challenges posed by their processing and characterization and by the refinement of various sorption models. Further, MCM-41-based materials are currently under intense investigation with respect to their utility as adsorbents, catalysts, supports, ion-exchangers, and molecular hosts. In this article, we provide a critical review of the developments in these areas with particular emphasis on adsorption characteristics, progress in controlling the pore sizes, and a comparison of pore size distributions using traditional and newer models. The model proposed by the authors for adsorption isotherms and criticalities in capillary condensation and hysteresis is found to explain unusual adsorption behavior in these materials while providing a convenient characterization tool.
Resumo:
Mesoporous Ti-substituted aluminophosphates (AlPOs) with a hexagonal, cubic and lamellar pore structure, characteristic of MCM-41, MCM-48, and MCM-50, respectively, were synthesized. The stability of these mesophases upon template removal was studied. The pore structures, surface properties, and local atom environments of Al, P, and Ti of the hexagonal and cubic Ti-containing mesoporous products were extensively characterized using X-ray diffraction, magic angle spinning nuclear magnetic resonance, AAS, XPS, ultraviolet–visible, and adsorption of nitrogen and water vapor techniques while the lamellar mesophase was not further characterized due to its very poor thermal stability. Ti-containing mesoporous AlPO materials show a reasonable thermal stability upon template removal, a hydrophilic surface property, and high porosity showing application potentials in catalytic oxidation of hydrocarbons.
Resumo:
Cobalamins are stored in high concentrations in the human liver and thus are available to participate in the regulation of hepatotropic virus functions. We show that cyanocobalamin (vitamin B12) inhibited the H(IV internal ribosome entry site (IRES)-dependent translation of a reporter gene in vitro in a dose-dependent manner without significantly affecting the cap-dependent mechanism. Vitamin B12 failed to inhibit translation by IRES elements from encephalomyocarditis virus (EMCV) or classical swine fever virus (CSFV), We also demonstrate a relationship between the total cobalamin concentration in human sera and HCV viral load (a measure of viral replication in the host), The mean viral load was two orders of magnitude greater when the serum cobalamin concentration was above 200 pM (P < 0.003), suggesting that the total cobalamin concentration in an HCV-infected liver is biologically significant in HCV replication.
Resumo:
Silica xerogels were prepared by a sol-gel process catalyzed by acid with tetraethylorthosilicate, and using an organic covalent ligand template (methyltriethoxysilane) or a noncovalent template C6 surfactant (triethylhexylammonium bromide). The influence of hydrotreatment on the structure of templated xerogels is examined in terms of surface area, micropore volume, average pore size, and pore size distribution, and compared against a blank xerogel (nontemplated). The role of surface functional groups was evaluated using Si-29 nuclear magnetic resonance. The structural integrity of the xerogel was maintained to a large extent in samples that had a high contribution of Q(4) species (siloxane groups). Xerogel matrix densification occurred when there was a large concentration of Q(3) and Q(2) species (silanol groups), which also were responsible for increased hydrophilicity. The templated xerogels resulted in up to a 25% concentration of methyl functional groups (T-3 and T-2 species), leading to hydrophobic xerogels. The best results in terms of structural integrity and hydrophobicity were obtained with templated xerogels prepared with the C6 surfactant. The results in this study suggest that surfactant-enhanced condensation reactions lead to structures with a high contribution of Q(4) groups, which are not susceptible to water attack, but are strong enough to oppose matrix densification during rehydration.
Resumo:
This paper presents the results of the characterisation of templated silica xerogels as precursor material for molecular sieve silica membranes for gas separation. The template agent integrated in the xerogel matrix is a methyl ligand covalently bended to the siloxane network in the form of methyltriethoxysilane (MTES). Several surface and microstructural characterisation techniques such as TGA, FTIR, NMR, and nitrogen adsorption have been employed to obtain information on the reaction mechanisms involved in the sol-gel processing of such molecular sieves. The characterisation results show the effects of processing parameters such as heat treatment temperature, and the concentration of the covalently bonded template on the development of the pore structure. It was found that calcination temperature significantly enhanced the condensation reactions thus resulted in more Si-O-Si groups being formed. This was also confirmed with the data of FTIR characterisation showing enhanced silicon bands at higher heat treatment temperatures. As a result of the promoted densification and shrinkable pore network the micropore volume also reduced with increasing methyl ligand molar ratio. However, the mean pore diameter does not change significantly with calcination temperature. While the contribution of the templates towards controlling pore size is less precise, increasing the methyl ligand molar ratio results in the broadening of the pore size distribution and lower pore volume. Higher template concentration induces the collapse of the xerogel matrix due to capillary stress promoting dense xerogels with low pore volume (C) 2001 Elsevier Science B.V. All rights reserved.