916 resultados para Modification of the aromatic ring
Resumo:
Alnumycin A is an aromatic pyranonaphthoquinone (PNQ) polyketide closely related to the model compound actinorhodin. While some PNQ polyketides are glycosylated, alnumycin A contains a unique sugar-like dioxane moiety. This unusual structural feature made alnumycin A an interesting research target, since no information was available about its biosynthesis. Thus, the main objective of the thesis work became to identify the steps and the enzymes responsible for the biosynthesis of the dioxane moiety. Cloning, sequencing and heterologous expression of the complete alnumycin gene cluster from Streptomyces sp. CM020 enabled the inactivation of several alnumycin biosynthetic genes and preliminary identification of the gene products responsible for pyran ring formation, quinone formation and dioxane biosynthesis. The individual deletions of the genes resulted in the production of several novel metabolites, which in many cases turned out to be pathway intermediates and could be used for stepwise enzymatic reconstruction of the complete dioxane biosynthetic pathway in vitro. Furthermore, the in vitro reactions with purified alnumycin biosynthetic enzymes resulted in the production of other novel compounds, both pathway intermediates and side products. Identification and molecular level studies of the enzymes AlnA and AlnB catalyzing the first step of dioxane biosynthesis – an unusual C-ribosylation step – led to a mechanistic proposal for the C-ribosylation of the polyketide aglycone. The next step on the dioxane biosynthetic pathway was found to be the oxidative conversion of the attached ribose into a highly unusual dioxolane unit by Aln6 belonging to an uncharacterized protein family, which unexpectedly occurred without any apparent cofactors. Finally, the last step of the pathway was found to be catalyzed by the NADPH-dependent reductase Aln4, which is able to catalyze the conversion of the formed dioxolane into a dioxane moiety. The work presented here and the knowledge gained of the enzymes involved in dioxane biosynthesis enables their use in the rational design of novel compounds containing C–C bound ribose, dioxolane and dioxane moieties.
Resumo:
Dioctophymosis is a worldwide renal parasitosis caused by the Dioctophyma renale nematode, which results in progressive destruction of renal tissue. Aquatics annelids are considered the main intermediate hosts and the literature refers as permanent hosts of dogs, wild mammals and even humans. During procedures for population control of coatis (Nasua nasua) in the Ecological Park of Tietê (PET), was noticed the presence of parasitosis by D. renale. From 68 animals, males and females, young and adults, submitted to exploratory laparotomy, 51 were positive for the presence of worms, 9 were found only in the right kidney. In 10 cases, in addition to right kidney parasitism, worms were also observed in the abdominal cavity. In 24 cases D. renale was found only in the abdominal cavity and in 8 animals the right kidney was reduced to a small rigid structure. The study showed that the preferred site for parasitism of the worm, considered erratic, was the abdominal cavity in 66.66% of the cases.
Resumo:
This thesis describes work related to the in-depth characterization of the phenolic compounds of silver birch (Betula pendula) inner bark. Phenolic compounds are the most ubiquitous class of plant secondary compounds. The unifying feature of this structurally diverse group is an aromatic ring containing at least one hydroxyl group. Due to the structural diversity, phenolics have various roles in the plant defense against biotic and abiotic stresses. In addition, they can confer several health-promoting properties to humans. Furthermore, the structural diversity of this class of compounds causes challenges for their analysis. The study species in the present work, silver birch, is economically the most important hard wood species in northern Europe. Its inner bark contains a high level of phenolic compounds and it has shown one of the strongest antioxidant activities among 92 Finnish plant materials. The literature review surveys the diversity and organ specific distribution of phenolic compounds in silver birch as well as the proposed ecological functions of phenolic compounds in nature. In addition, the basis for the characterization of phenolics by mass spectrometry (MS), nuclear magnetic resonance spectroscopy (NMR), and circular dichroism spectroscopy (CD) are reviewed. The objective of the experimental work was to extract, purify, characterize, and quantify the inner bark phenolic compounds. Overall 36 compounds were characterized by MS and ultraviolet spectroscopy (UV). 24 compounds were isolated and their structures confirmed by NMR and CD spectroscopy. Five novel natural compounds were identified. Special emphasis was placed on the establishment of a method for the characterization of proanthocyanidins (PAs). Hydrophilic interaction liquid chromatography (HILIC) was utilized because of its high resolution power and predictable elution order of oligomeric and polymeric PAs according to an increasing degree of polymerization. The combination of HILIC and high-resolution MS detection allowed the identification of procyanidin (PC) polymers up to the degree of polymerization of 22. In addition, a series of oligomeric and polymeric PC monoxylosides were observed for the first time in nature. Season and genotype influenced the quantities of the main inner bark phenolics, yet qualitative differences were not observed. However, manual wounding of the inner bark induced the production of ellagitannins (ETs) in the wounded tissues, i.e. callus. Since ETs were not detected in the intact inner bark, this finding may reflect the capacity of silver birch to exploit ellagitannins in its defense.
Resumo:
The modification of pyruvate kinase (PK) and lactate dehydrogenase (LDH) activity in foot muscle of the mussel Mytilus galloprovincialis during exposure to air and recovery in water was investigated. In the course of exposure to air, the activity of these enzymes measured at high and low substrate concentrations showed successive increases and decreases. Returning the mussels to water after exposure to air affected enzyme activity in a manner similar to anaerobiosis. When measuring at saturated concentrations of substrates and substrate and coenzyme for PK and LDH, respectively, the maximum activation of PK (37%) was observed at 4 h of animal exposure to air, and for LDH (67%) at 6 h exposure to air. During 24 h of exposure of animals to air, PK activity practically reached the stock level, while LDH was still activated (148%). The change in lactate dehydrogenase activity in mussel muscle during anoxia and recovery is described here for the first time. Variation in pyruvate kinase activity during exposure to air and recovery is linked to the alteration of half-maximal saturation constants and maximal velocity for both substrates. The possible role of reversible phosphorylation in the regulation of pyruvate kinase and lactate dehydrogenase properties is discussed
Resumo:
Poly-L-lactide (PLLA) is a widely used sustainable and biodegradable alternative to replace synthetic non-degradable plastic materials in the packaging industry. Conversely, its processing properties are not always optimal, e.g. insufficient melt strength at higher temperatures (necessary in extrusion coating processes). This thesis reports on research to improve properties of commercial PLLA grade (3051D from NatureWorks), to satisfy and extend end-use applications, such as food packaging by blending with modified PLLA. Adjustment of the processability by chain branching of commercial poly-L-lactide initiated by peroxide was evaluated. Several well-defined branched structures with four arms (sPLLA) were synthesized using pentaerythritol as a tetra-functional initiator. Finally, several block copolymers consisting of polyethylene glycol and PLLA (i.e. PEGLA) were produced to obtain a well extruded material with improved heat sealing properties. Reactive extrusion of poly-L-lactide was carried out in the presence of 0.1, 0.3 and 0.5 wt% of various peroxides [tert-butyl-peroxybenzoate (TBPB), 2,5-dimethyl-2,5-(tert-butylperoxy)-hexane (Lupersol 101; LOL1) and benzoyl peroxide (BPO)] at 190C. The peroxide-treated PLLAs showed increased complex viscosity and storage modulus at lower frequencies, indicating the formation of branched/cross linked architectures. The material property changes were dependent on the peroxide, and the used peroxide concentration. Gel fraction analysis showed that the peroxides, afforded different gel contents, and especially 0.5 wt% peroxide, produced both an extremely high molar mass, and a cross linked structure, not perhaps well suited for e.g. further use in a blending step. The thermal behavior was somewhat unexpected as the materials prepared with 0.5 wt% peroxide showed the highest ability for crystallization and cold crystallization, despite substantial cross linking. The peroxide-modified PLLA, i.e. PLLA melt extruded with 0.3 wt% of TBPB and LOL1 and 0.5 wt% BPO was added to linear PLLA in ratios of 5, 15 and 30 wt%. All blends showed increased zero shear viscosity, elastic nature (storage modulus) and shear sensitivity. All blends remained amorphous, though the ability of annealing was improved slightly. Extrusion coating on paperboard was conducted with PLLA, and peroxide-modified PLLA blends (90:10). All blends were processable, but only PLLA with 0.3 wt% of LOL1 afforded a smooth high quality surface with improved line speed. Adhesion levels between fiber and plastic, as well as heat seal performance were marginally reduced compared with pure 3051D. The water vapor transmission measurements (WVTR) of the blends containing LOL1 showed acceptable levels, only slightly lower than for comparable PLLA 3051D. A series of four-arm star-shaped poly-L-lactide (sPLLA) with different branch length was synthesized by ring opening polymerization (ROP) of L-lactide using pentaerythritol as initiator and stannous octoate as catalyst. The star-shaped polymers were further blended with its linear resin and studied for their melt flow and thermal properties. Blends containing 30 wt% of sPLLA with low molecular weight (30 wt%; Mwtotal: 2500 g mol-1 and 15000 g mol-1) showed lower zero shear viscosity and significantly increased shear thinning, while at the same time slightly increased crystallization of the blend. However, the amount of crystallization increased significantly with the higher molecular weight sPLLA, therefore the star-shaped structure may play a role as nucleating agent. PLLA-polyethylene glycol–PLLA triblock copolymers (PEGLA) with different PLLA block length were synthesized and their applicability as blends with linear PLLA (3051D NatureWorks) was investigated with the intention of improving heat-seal and adhesion properties of extrusion-coated paperboard. PLLA-PEG-PLLA was obtained by ring opening polymerization (ROP) of L-lactide using PEG (molecular weight 6000 g mol-1) as an initiator, and stannous octoate as catalyst. The structures of the PEGLAs were characterized by proton nuclear magnetic resonance spectroscopy (1H-NMR). The melt flow and thermal properties of all PEGLAs and their blends were evaluated using dynamic rheology, and differential scanning calorimeter (DSC). All blends containing 30 wt% of PEGLAs showed slightly higher zero shear viscosity, higher shear thinning and increased melt elasticity (based on tan delta). Nevertheless, no significant changes in thermal properties were distinguished. High molecular weight PEGLAs were used in extrusion coating line with 3051D without problems.
Resumo:
Factors affecting the detennination of PAHs by capillary GC/MS were studied. The effect of the initial column temperature and the injection solvent on the peak areas and heights of sixteen PAHs, considered as priority pollutants, USillg crosslinked methyl silicone (DB!) and 5% diphenyl, 94% dimethyl, 1% vinyl polysiloxane (DBS) columns was examined. The possibility of using high boiling point alcohols especially butanol, pentanol, cyclopentanol, and hexanol as injection solvents was investigated. Studies were carried out to optimize the initial column temperature for each of the alcohols. It was found that the optimum initial column temperature is dependent on the solvent employed. The peak areas and heights of the PAHs are enhanced when the initial column temperature is 10-20 c above the boiling point of the solvent using DB5 column, and the same or 10 C above the boiling point of the solvent using DB1 column. Comparing the peak signals of the PAHs using the alcohols, p-xylene, n-octane, and nonane as injection solvents, hexanol gave the greatest peak areas and heights of the PAHs particularly the late-eluted peaks. The detection limits were at low pg levels, ranging from 6.0 pg for fluorene t9 83.6 pg for benzo(a)pyrene. The effect of the initial column temperature on the peak shape and the separation efficiency of the PARs was also studied using DB1 and DB5 columns. Fronting or splitting of the peaks was obseIVed at very low initial column temperature. When high initial column temperature was used, tailing of the peaks appeared. Great difference between DB! and.DB5 columns in the range of the initial column temperature in which symmetrical.peaks of PAHs can be obtained is observed. Wider ranges were shown using DB5 column. Resolution of the closely-eluted PAHs was also affected by the initial column temperature depending on the stationary phase employed. In the case of DB5, only the earlyeluted PAHs were affected; whereas, with DB1, all PAHs were affected. An analytical procedure utilizing solid phase extraction with bonded phase silica (C8) cartridges combined with GC/MS was developed to analyze PAHs in water as an alternative method to those based on the extraction with organic solvent. This simple procedure involved passing a 50 ml of spiked water sample through C8 bonded phase silica cartridges at 10 ml/min, dried by passing a gentle flow of nitrogen at 20 ml/min for 30 sec, and eluting the trapped PAHs with 500 Jll of p-xylene at 0.3 ml/min. The recoveries of PAHs were greater than 80%, with less than 10% relative standard deviations of nine determinations. No major contaminants were present that could interfere with the recognition of PAHs. It was also found that these bonded phase silica cartridges can be re-used for the extraction of PAHs from water.
Resumo:
The reproductive biology of the Ring-billed Gull (Larus delawarensis) was studied on Gull Island, Presqu'ile Provincial Park, Ontario, in 1976 and 1977. Early started clutches (comprising the majority of clutches on Gull Island) in 1977 produced more chicks per nest (2.20 ± 0.09) than late started clutches (0.86 ± 0.13) as a result of reductions in mean clutch size, hatching success and fledging success with date of clutch initiation. Seasonal changes in mean clutch size, hatching success and fledging success also resulted in early clutches, initiated at the peak of clutch starts, producing more chicks per nest (2.34 ± 0.11) than either pre-peak (2.13 ± 0.20) or post-peak (1.82 ± 0.29) clutches. Possible reasons for these trends, including the observed predominance of immature plumaged, breeding gulls in late started areas, are discussed. Clutches were deserted at night for varying lengths of time from at least 15 April until 10 May, 1977. It is suggested that this nocturnal desertion behaviour resulted in the enhancement of inter- and intra-clutch hatching synchrony in early started areas and further, that this may in part explain the existence of the behaviour in terms of its adaptive significance.
Resumo:
The cr ystal structure of the compound 2-benzoylethylidene-3-(2,4- dibromophenyl)-2,3-dihydro-5-phenyl-l,3,4-thiadiazole* C23H16Br2NZOS (BRMEO) has been determined by using three dimensiona l x-ray diffraction data. The crys tal form is monoclinic, space group P21/c, a = 17.492(4), o -.t' 0 R 0 b =: 16.979(1), c = 14.962(1) A, "X. =o= 90 ',= 106.46(1) , z = 8, graphite-monochromatized Mo~ rad iation, Jl= 0.710J3~, D = 1.62g/cc and o D = 1.65g/cc. The data were col lected on ~ Nonius CAD-4 c diffractometer. The following atoms were made anisotropic: Br, S, N, 0, C7, and C14-C16 for each i ndependent molecu le ; the rest were left isotropic. For 3112 independent refl ec tions with F > 6G\F), R == 0.057. The compound has two independent molecules within the asymmetric unit. Two different conformers were observed which pack well together. /l The S---O interaction distances of 2.493(6) and 2 . 478(7) A were observed for molecules A and B respectively. These values are consistent with earlier findings for 2-benzoylmethylene-3-(2,4-dibromophenyl)- ~~ 2,3-dihydro-5-phenyl-l,3,4-thiadiazole C22H14Br2N20S (BRPHO) and 2-benzoylpropylidene-3-(2,4-dibromophenyl)-2,3-dihydroiii ,'r 5-phenyl-l,3,4-thiadiazole C24H18Br2N20S (BRPETO ) where S---O distances are l ess than the van der Waals (3.251\) but greater than those expected for () a single bond (1.50A). From the results and the literature it appears obvious that the energy/reaction coordinate pathway has a minimum between the end structures (the mono- and bicyclic compounds). * See reference (21) for nomenclature.
Resumo:
A number of 2-chlorobenzophenones, containing electron releasing groups (e.g. hydroxy, thiomethoxy and methoxy) in the 4' - position, were prepared by the Friess rearrangement, or the Friedel-Crafts reaction. These ketones, when treated with potassamide in liquid ammonia, underwent partial Haller-Bauer scission, unlike 2-chlorobenzophenone which is known to undergo complete scission. Under similar conditions 4-nitrobenzophenone also underwent partial scission, but the main reaction in this case was nucleophilic amination of the nitro containing ring. This amination reaction was shown not to be a useful general reaction for aromatic nitro compounds. 3-Methylxanthone was then prepared by treatment of 2- and 3- chloro-2'-hydroxy-5'-methylbenzophenone with . little, if any, attendant scission. The corresponding 2fluoro- compound also gave the xanthone, but as the 3-fluoro compound did not, it was concluded that the 2-fluoro compound reacted through a nucleophilic substitution mechanism, rather than the benzyne mechanism invoked for the chloro and bromo compounds. 3-Methylthioxanthone was synthesised by treatment of methyl 4-tolyl sulphide and 2-chlorobenzoyl chloride with aluminum chloride in carbon disu1phide, followed.by heating. This compound was also prepared by treatment of 3-chloro-2'thiomethoxy- 5'-methylbenzophenone with potassamide in liquid ammonia.
Resumo:
Toluene is converted to benzyl alcohol by the fungi Mortierella isabellina and Helminthosporium species; in the latter case, the product is further metabolized. Toluene-a -d 1 , toluene-a,a-d2, and toluene-a,a,a-d 3 have been used with Mortierellaisabellina in a series of experiments to determine both primary and secondary deuterium kinetic isotope effects for the enzymic benzylic hydroxylation reaction. The values obtained, intermolecular primary kH/kD = intramolecular p rim a r y kH r kD = 1. 0 2 + O. 0 5, and sec 0 n dar y k H I kD = 1. 37 .:!. 0.05, suggest a mechanism for the reaction involving benzylic proton removal from a radical intermediate in a non-symmetrical transition state. 2H NMR (30.7 MHz) studies using ethylbenzene-l,1-d 2 , 3 -fluoroethylbenzene-l,1-d 2 , 4 -fluoroethylbenzene-l,1-d 2 , and toluene-dB as substrates with Mortierella isabellina suggest, based on the observable differences in rates of conversion between the substrates, that the hydroxylation of hydrocarbons at the benzylic position proceeds via a one electron abstraction from the aromatic ring, giving a radical cation. A series of 1,3-oxathiolanes (eight) were incubated with Mortierella isabellina , Helminthosporium , Rhizopus arrhizus , and Aspergillus niger . Sulphoxides were obtained from Mortierella isabellina and Rhizopus arrhizus using the substrates 2-phenyl-, 2-methyl-2-phenyl-, and 2-phenyl-2-tert. butyl-l,3-oxathiolane. The relative stereochemistry of 2-methyl-2-phenyl-l,3-oxathiolan-l-oxide was assigned based on lH decoupling, n.O.e, 1 and H NMR experiments. The lH NMR (200 MHz) of the methylene protons of 2-methyl-2-phenyl-l,3-oxathiolan-l-oxide was used as a diagnostic standard in assigning the relative stereochemistry of 2-phenyl-l,3-oxathiolan-l-oxide and 2-phenyl-2-tert. butyl-l,3-oxathiolan-l-oxide. The sulphoxides obtained were consistent with an oxidation occurring from the opposite side of the molecule to the phenyl substituent.
Resumo:
The Introducti on deals mainly with hi storical studies on aryne chemi stry and ring closure via arynes , hydride replacement from aromatic rings by nucleophi les, c l eavage of anthr aquinones in basic medium and the Leuckart reaction . This work can be divided into two main s ect i ons. Section I is concerned with the investigation of t he reaction of some aromatic ni t ro-compounds with potassamide in l iquid ammonia. 3-Amino-4- nitrobenzophenone was obtained from the reacti on of 4-nitrobenzophenone with t his reagent, toge t her with benzoic acid formed in a competing Haller-Bauer reaction. Nitrobenzene under these conditions gave a complex mixture from which 2-phenylphenol was isolated; a reaction i nvolving benzyne may be i nvo l ved. 4-Nitrodiphenyl sulfone gave 4-aminodiphenyl sulfone and 4-nitroani l ine. 4-Ethoxydiphenyl sulfone and 4-ethoxynitrobenzene were isolated when ethanol was used as a co-solvent in the reaction. Oxidative coupling reactions were observed with nitrotoluenes. 4-Nitrotoluene gave 4,4t-dinitrobibenzyl which i n a pro longed reaction gave 4,4t-dinitros t ilbene . 2-Nitrotoluene gave 2 , 2 t-dinitrobibenzyl, but not the corresponding stilbene derivative even after a longer time . A rather i nteresting result was obtained with 1-nitro-2,4,6- trimethylbenzene which gave a stilbene derivative only. Also the corresponding stilbene was obtained from bis-(4-nitrophenyl)-methane in a rather slow r eaction with this reagent . Section II deals wi th (i) the preparation of 5-chloro- 1-N-methyl aminoanthraquinone and a new synthesis of N-methyl acridones and (ii) treatment of chloro-anthraquinones with fo rmamide and a new synthesis of chloro-anthracenes . 5-Chloro-1 -N-methylaminoanthraqui none was synthesised f rom 1,5-dichloroanthraquinone by treatment with N-methylformamide. Treatment of 5-chloro-1-N-methylaminoanthraquinone with potassamide in liquid ammonia or with potassium t-butoxide i n t-butylbenzene gave N-methylacridone-1-carboxylic acid. This pleasing result, t he outcome of r i ng opening and alter native ring closure, is being extended to related ring systems.
Resumo:
Factors involved in the determination of PAHs (16 priority PAHs as an example) and PCBs (10 PCB congeners, representing 10 isomeric groups) by capillary gas chromatography coupled with mass spectrometry (GC/MS, for PAHs) and electron capture detection (GC/ECD , for PCBs) were studied, with emphasis on the effect of solvent. Having various volatilities and different polarities, solvent studied included dichloromethane, acetonitrile, hexan e, cyclohexane, isooctane, octane, nonane, dodecane, benzene, toluene, p-xylene, o-xylene, and mesitylene. Temperatures of the capillary column, the injection port, the GC/MS interface, the flow rates of carrier gas and make-up gas, and the injection volume were optimized by one factor at a time method or simplex optimization method. Under the optimized conditions, both peak height and peak area of 16 PAHs, especially the late-eluting PAHs, were significantly enhanced (1 to 500 times) by using relatively higher boiling point solvents such as p-xylene and nonane, compared with commonly used solvents like benzene and isooctane. With the improved sensitivity, detection limits of between 4.4 pg for naphthalene and 30.8 pg for benzo[g,h,i]perylene were obtained when p-xylene was used as an injection solvent. Effect of solvent on peak shape and peak intensity were found to be greatly dependent on temperature parameters, especially the initial temperature of the capillary column. The relationship between initial temperature and shape of peaks from 16 PAHs and 10 PCBs were studied and compared when toluene, p-xylene, isooctane, and nonane were used as injection solvents. If a too low initial temperature was used, fronting or split of peaks was observed. On the other hand, peak tailing occurred at a too high initial column temperature. The optimum initial temperature, at which both peak fronting and tailing were avoided and symmetrical peaks were obtained, depended on both solvents and the stationary phase of the column used. On a methyl silicone column, the alkane solvents provided wider optimum ranges of initial temperature than aromatic solvents did, for achieving well-shaped symmetrical GC peaks. On a 5% diphenyl: 1% vinyl: 94% dimethyl polysiloxane column, when the aromatic solvents were used, the optimum initial temperature ranges for solutes to form symmetrical peaks were improved to a similar degree as those when the alkanes were used as injection solvents. A mechanism, based on the properties of and possible interactions among the analyte, the injection solvent, and the stationary phase of the capillary column, was proposed to explain these observations. The effect of initial temperature on peak height and peak area of the 16 PAHs and the 10 PCBs was also studied. The optimum initial temperature was found to be dependent on the physical properties of the solvent used and the amount of the solvent injected. Generally, from the boiling point of the solvent to 10 0C above its boiling point was an optimum range of initial temperature at which cthe highest peak height and peak area were obtained.
Resumo:
Part I - Fluorinated Compounds A method has been developed for the extraction, concentration, and determination of two unique fluorinated compounds from the sediments of Lake Ontario. These compounds originated from a common industrial landfill, and have been carried to Lake Ontario by the Niagara River. Sediment samples from the Mississauga basin of Lake Ontario have been evaluated for these compounds and a depositional trend was established. The sediments were extracted by accelerated solvent extraction (ASE) and then underwent clean-up, fractionation, solvent exchange, and were concentrated by reduction under nitrogen gas. The concentrated extracts were analyzed by gas chromatography - electron capture negative ionization - mass spectrometry. The depositional profile determined here is reflective of the operation of the landfill and shows that these compounds are still found at concentrations well above background levels. These increased levels have been attributed to physical disturbances of previously deposited contaminated sediments, and probable continued leaching from the dumpsite. Part II - Polycyclic Aromatic Hydrocarbons Gas chromatography/mass spectrometry is the most common method for the determination of polycyclic aromatic hydrocarbons (PAHs) from various matrices. Mass discrimination of high-boiling compounds in gas chromatographic methods is well known. The use of high-boiling injection solvents shows substantial increase in the response of late-eluting peaks. These solvents have an increased efficiently in the transfer of solutes from the injector to the analytical column. The effect of I-butanol, I-pentanol, cyclopentanol, I-hexanol, toluene and n-octane, as injection solvents, was studied. Higher-boiling solvents yield increased response for all PAHs. I -Hexanol is the best solvent, in terms of P AH response, but in this solvent P AHs were more susceptible to chromatographic problems such as peak splitting and tailing. Toluene was found to be the most forgiving solvent in terms of peak symmetry and response. It offered the smallest discrepancies in response, and symmetry over a wide range of initial column temperatures.
Resumo:
Cette thèse concerne l’étude de phase de séparation de deux polymères thermosensibles connus-poly(N-isopropylacylamide) (PNIPAM) et poly(2-isopropyl-2-oxazoline) (PIPOZ). Parmi des études variées sur ces deux polymères, il y a encore deux parties de leurs propriétés thermiques inexplicites à être étudiées. Une partie concerne l’effet de consolvant de PNIPAM dans l’eau et un autre solvant hydromiscible. L’autre est l’effet de propriétés de groupes terminaux de chaînes sur la séparation de phase de PIPOZ. Pour ce faire, nous avons d’abord étudié l’effet de l’architecture de chaînes sur l’effet de cosolvant de PNIPAMs dans le mélange de méthanol/eau en utilisant un PNIPAM en étoile avec 4 branches et un PNIPAM cyclique comme modèles. Avec PNIPAM en étoile, l’adhérence de branches PNIPAM de à un cœur hydrophobique provoque une réduction de Tc (la température du point de turbidité) et une enthalpie plus faible de la transition de phase. En revanche, la Tc de PNIPAM en étoile dépend de la masse molaire de polymère. La coopérativité de déhydratation diminue pour PNIPAM en étoile et PNIPAM cyclique à cause de la limite topologique. Une étude sur l’influence de concentration en polymère sur l’effet de cosolvant de PNIPAM dans le mélange méthanol/eau a montré qu’une séparation de phase liquide-liquide macroscopique (MLLPS) a lieu pour une solution de PNIPAM dans le mélange méthanol/eau avec la fraction molaire de méthanol entre 0.127 et 0.421 et la concentration en PNIPAM est constante à 10 g.L-1. Après deux jours d’équilibration à température ambiante, la suspension turbide de PNIPAM dans le mélange méthanol/eau se sépare en deux phases dont une phase possède beaucoup plus de PNIPAM que l’autre. Un diagramme de phase qui montre la MLLPS pour le mélange PNIPAM/eau/méthanol a été établi à base de données expérimentales. La taille et la morphologie de gouttelettes dans la phase riche en polymère condensée dépendent de la fraction molaire de méthanol. Parce que la présence de méthanol influence la tension de surface des gouttelettes liquides, un équilibre lent de la séparation de phase pour PNIPAM/eau/méthanol système a été accéléré et une séparation de phase liquide-liquide macroscopique apparait. Afin d’étudier l’effet de groupes terminaux sur les propriétés de solution de PIPOZ, deux PIPOZs téléchéliques avec groupe perfluorodécanyle (FPIPOZ) ou groupe octadécyle (C18PIPOZ) comme extrémités de chaîne ont été synthétisés. Les valeurs de Tc des polymères téléchéliques ont beaucoup diminué par rapport à celle de PIPOZ. Des micelles stables se forment dans des solutions aqueuses de polymères téléchéliques. La micellization et la séparation de phase de ces polymères dans l’eau ont été étudiées. La séparation de phase de PIPOZs téléchéliques suit le mécanisme de MLLPS. Des différences en tailles de gouttelettes formées à l’intérieur de solutions de deux polymères ont été observées. Pour étudier profondément les différences dans le comportement d’association entre deux polymères téléchéliques, les intensités des signaux de polymères correspondants et les temps de relaxation T1, T2 ont été mesurés. Des valeurs de T2 de protons correspondants aux IPOZs sont plus hautes.
Resumo:
Poor cold flow properties of vegetable oils are a major problem preventing the usage of many abundantly available vegetable oils as base stocks for industrial lubricants. The major objective of this research is to improve the cold flow properties of vegetable oils by various techniques like additive addition and different chemical modification processes. Conventional procedure for determining pour point is ASTM D97 method. ASTM D97 method is time consuming and reproducibility of pour point temperatures is poor between laboratories. Differential Scanning Calorimetry (DSC) is a fast, accurate and reproducible method to analyze the thermal activities during cooling/heating of oil. In this work coconut oil has been chosen as representative vegetable oil for the analysis and improvement cold flow properties since it is abundantly available in the tropics and has a very high pour point of 24 °C. DSC is used for the analysis of unmodified and modified vegetable oil. The modified oils (with acceptable pour points) were then subjected to different tests for the valuation of important lubricant properties such as viscometric, tribological (friction and wear properties), oxidative and corrosion properties.A commercial polymethacrylate based PPD was added in different percentages and the pour points were determined in each case. Styrenated phenol(SP) was added in different concentration to coconut oil and each solution was subjected to ASTM D97 test and analysis by DSC. Refined coconut oil and other oils like castor oil, sunflower oil and keranja oil were mixed in different proportions and interesterification procedure was carried out. Interesterification of coconut oil with other vegetable oils was not found to be effective in lowering the pour point of coconut oil as the reduction attained was only to the extent of 2 to 3 °C.Chemical modification by acid catalysed condensation reaction with coconut oil castor oil mixture resulted in significant reduction of pour point (from 24 ºC to -3 ºC). Instead of using triacylglycerols, when their fatty acid derivatives (lauric acid- the major fatty acid content of coconut oil and oleic acid- the major fatty acid constituents of monoand poly- unsaturated vegetable oils like olive oil, sunflower oil etc.) were used for the synthesis , the pour point could be brought down to -42 ºC. FTIR and NMR spectroscopy confirmed the ester structure of the product which is fundamental to the biodegradability of vegetable oils. The tribological performance of the synthesised product with a suitable AW/EP additive was comparable to the commercial SAE20W30 oil. The viscometric properties (viscosity and viscosity index) were also (with out additives) comparable to commercial lubricants. The TGA experiment confirmed the better oxidative performance of the product compared to vegetable oils. The sample passed corrosion test as per ASTM D130 method.