1000 resultados para Modelo padrão (Física nuclear)
Resumo:
An exact solution of the Einstein equations in vacuum representing two pairs of gravitational solitons propagating on an expanding universe is given and studied. It is suggested that the solitons evolve from quasiparticles to pure gravitational waves. Two of the four solitons collide and the focusing produced on null rays is studied. Although the spacetime following the collision is highly distorted, null rays do not focus to a singularity.
Resumo:
We study the most general unitary transformation that transform the Hamiltonians of particles of spins 0, 1/2 or 1, into Hamiltonians containing even or odd matrices only. We present also the expressions for the position operators for each transformation that are valid for the three kinds of particles mentioned above.
Resumo:
We recently showed that a heavy quark moving su ciently fast through a quark-gluon plasma may lose energy by Cherenkov-radiating mesons [1]. Here we review our previous holographic calculation of the energy loss in N = 4 Super Yang-Mills and extend it to longitudinal vector mesons and scalar mesons. We also discuss phenomenological implications for heavy-ion collision experiments. Although the Cherenkov energy loss is an O(1=Nc) effect, a ballpark estimate yields a value of dE/dx for Nc = 3 which is comparable to that of other mechanisms.
Resumo:
We report the first observation of steps in the hysteresis loop of a high¿spin molecular magnet. We propose that the steps, which occur every 0.46 T, are due to thermally assisted resonant tunneling between different quantum spin states. Magnetic relaxation increases dramatically when the field is in the neighborhood of a step. A simple model accounts for the observations and predicts a value for the anisotropy barrier consistent with that inferred from the superparamagnetic blocking temperature
Resumo:
We study the effects of the magnetic field on the relaxation of the magnetization of smallmonodomain noninteracting particles with random orientations and distribution of anisotropyconstants. Starting from a master equation, we build up an expression for the time dependence of themagnetization which takes into account thermal activation only over barriers separating energyminima, which, in our model, can be computed exactly from analytical expressions. Numericalcalculations of the relaxation curves for different distribution widths, and under different magneticfields H and temperatures T, have been performed. We show how a T ln(t/t0) scaling of the curves,at different T and for a given H, can be carried out after proper normalization of the data to theequilibrium magnetization. The resulting master curves are shown to be closely related to what wecall effective energy barrier distributions, which, in our model, can be computed exactly fromanalytical expressions. The concept of effective distribution serves us as a basis for finding a scalingvariable to scale relaxation curves at different H and a given T, thus showing that the fielddependence of energy barriers can be also extracted from relaxation measurements.
Resumo:
We have included the effective description of squark interactions with charginos/neutralinos in the MadGraph MSSM model. This effective description includes the effective Yukawa couplings, and another logarithmic term which encodes the supersymmetry-breaking. We have performed an extensive test of our implementation analyzing the results of the partial decay widths of squarks into charginos and neutralinos obtained by using FeynArts/FormCalc programs and the new model file in MadGraph. We present results for the cross-section of top-squark production decaying into charginos and neutralinos.
Resumo:
Magnetic-relaxation measurements of a Tl-based high-Tc superconductor show temperature-independent flux creep below 6 K. The effect is analyzed in terms of the overdamped quantum diffusion of two-dimensional vortices. Good agreement between theory and experiment is found.
Resumo:
The pion spectrum for charged and neutral pions is investigated in pure neutron matter, by letting the pions interact with a neutron Fermi sea in a self-consistent scheme that renormalizes simultaneously the mesons, considered the source of the interaction, and the nucleons. The possibility of obtaining different kinds of pion condensates is investigated with the result that they cannot be reached even for values of the spin-spin correlation parameter, g', far below the range commonly accepted.
Resumo:
We revisit the analytical properties of the static quasi-photon polarizability function for an electron gas at finite temperature, in connection with the existence of Friedel oscillations in the potential created by an impurity. In contrast with the zero temperature case, where the polarizability is an analytical function, except for the two branch cuts which are responsible for Friedel oscillations, at finite temperature the corresponding function is non analytical, in spite of becoming continuous everywhere on the complex plane. This effect produces, as a result, the survival of the oscillatory behavior of the potential. We calculate the potential at large distances, and relate the calculation to the non-analytical properties of the polarizability.