883 resultados para Mitochondrial Dna
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Mitochondria are endosymbiotic organelles responsible for energy production in practically every eukaryotic cell. Their uniparental fashion of inheritance, maternally inherited in mammals, and the homogeneity of mitochondrial DNA (mtDNA) within individuals and matrilineages, are biological phenomena that remain unexplained. This paper reviews some of the recent findings on mitochondrial influences on the manner in which embryos develop and how their genotypes are inherited in mammals, with particular emphasis on the genetic bottleneck effect. Animal models carrying a mix of mtDNAs (heteroplasmic) have been produced by karyoplast and cytoplast transplantation to analyze the segregation patterns at different stages during embryogenesis, in fetuses and offspring. Comparisons performed between murine and bovine reveal interesting changes in segregation and replication of transplanted mtDNAs. We have recently obtained Bos indicus and Bos taurus fetuses and calves from embryos reconstructed using enucleated polymorphic oocytes of Bos taurus origin. These and other findings on mitochondrial biology will have important implications in determining the cytoplasmic genotype of clones and in the preservation of endangered breeds and species. (C) 1999 by Elsevier B.V.
Resumo:
Thaumastocoris peregrinus is a recently introduced invertebrate pest of non-native Eucalyptus plantations in the Southern Hemisphere. It was first reported from South Africa in 2003 and in Argentina in 2005. Since then, populations have grown explosively and it has attained an almost ubiquitous distribution over several regions in South Africa on 26 Eucalyptus species. Here we address three key questions regarding this invasion, namely whether only one species has been introduced, whether there were single or multiple introductions into South Africa and South America and what the source of the introduction might have been. To answer these questions, bar-coding using mitochondrial DNA (COI) sequence diversity was used to characterise the populations of this insect from Australia, Argentina, Brazil, South Africa and Uruguay. Analyses revealed three cryptic species in Australia, of which only T. peregrinus is represented in South Africa and South America. Thaumastocoris peregrinus populations contained eight haplotypes, with a pairwise nucleotide distance of 0.2-0.9% from seventeen locations in Australia. Three of these haplotypes are shared with populations in South America and South Africa, but the latter regions do not share haplotypes. These data, together with the current distribution of the haplotypes and the known direction of original spread in these regions, suggest that at least three distinct introductions of the insect occurred in South Africa and South America before 2005. The two most common haplotypes in Sydney, one of which was also found in Brisbane, are shared with the non-native regions. Sydney populations of T. peregrinus, which have regularly reached outbreak levels in recent years, might thus have served as source of these three distinct introductions into other regions of the Southern Hemisphere.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
DNA-based studies have been one of the major interests in conservation biology of endangered species and in population genetics. As species and population genetic assessment requires a source of biological material, the sampling strategy can be overcome by non-destructive procedures for DNA isolation. An improved method for obtaining DNA from fish fins and scales with the use of an extraction buffer containing urea and further DNA purification with phenol-chloroform is described. The methodology combines the benefits of a non-destructive DNA sampling and its high efficiency. In addition, comparisons with other methodologies for isolating DNA from fish demonstrated that the present procedure also becomes a very attractive alternative to obtain large amounts of high-quality DNA for use in different molecular analyses. The DNA samples, isolated from different fish species, have been successfully used on random amplified polymorphic DNA (RAPD) experiments, as well as on amplification of specific ribosomal and mitochondrial DNA sequences. The present DNA extraction procedure represents an alternative for population approaches and genetic studies on rare or endangered taxa.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Comparing introduced to ancestral populations within a phylogeographical context is crucial in any study aiming to understand the ecological genetics of an invasive species. Zaprionus indianus is a cosmopolitan drosophilid that has recently succeeded to expand its geographical range upon three continents (Africa, Asia and the Americas). We studied the distribution of mitochondrial DNA (mtDNA) haplotypes for two genes (CO-I and CO-II) among 23 geographical populations. mtDNA revealed the presence of two well-supported phylogenetic lineages (phylads), with bootstrap value of 100%. Phylad I included three African populations, reinforcing the African-origin hypothesis of the species. Within phylad II, a distinct phylogeographical pattern was discovered: Atlantic populations (from the Americas and Madeira) were closer to the ancestral African populations than to Eastern ones (from Madagascar, Middle East and India). This means that during its passage from endemism to cosmopolitanism, Z. indianus exhibited two independent radiations, the older (the Eastern) to the East, and the younger (the Atlantic) to the West. Discriminant function analysis using 13 morphometrical characters was also able to discriminate between the two molecular phylads (93.34 +/- 1.67%), although detailed morphological analysis of male genitalia using scanning electron microscopy showed no significant differences. Finally, crossing experiments revealed the presence of reproductive barrier between populations from the two phylads, and further between populations within phylad I. Hence, a bona species status was assigned to two new, cryptic species: Zaprionus africanus and Zaprionus gabonicus, and both were encompassed along with Z. indianus and Zaprionus megalorchis into the indianus complex. The ecology of these two species reveals that they are forest dwellers, which explains their restricted endemic distribution, in contrast to their relative cosmopolitan Z. indianus, known to be a human-commensal. Our results reconfirm the great utility of mtDNA at both inter- and intraspecific analyses within the frame of an integrated taxonomical project.
Resumo:
In this work, the biology, mitochondrial DNA and fertility of hybrids from two strains of Rhipicephalus sanguineus, from Brazil and Argentina, were compared. Engorged larvae, nymphs and adults from Argentina weighed more and the engorgement period of adult females was significantly longer than those of their Brazilian counterparts, whereas adult female tick yield rate was higher for the Brazilian strain. High intraspecific divergence of mitochondrial DNA was detected between R. sanguineus from Brazil and Argentina. on the other hand, a strong genetic relationship was detected between European and Argentinean R. sanguineus populations while the Brazilian population appeared to be related to the African Rhipicephalus turanicus. Adult hybrid females laid eggs, which were mostly unviable, whereas a mean of more than 1400 larvae hatched per egg mass from pure Brazilian and Argentinean strains. These results showed that differences between these strains are greater than previously assumed and that the biosysternatic status of R. sanguineus ticks from South America should be re-evaluated. Wide variations, such as these might account for the reported worldwide differences in biology and vector capacity of this species. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
We report the results of the seventh edition of the GEP-ISFG mitochondrial DNA (mtDNA) collaborative exercise. The samples submitted to the participant laboratories were blood stains from a maternity case and Simulated forensic samples, including a case of mixture. The success rate for the blood stains was moderate (similar to 77%); even though four inexperienced laboratories concentrated about one-third of the total errors. A similar success was obtained for the analysis of mixed samples (78.8% for a hair-saliva mixture and 69.2% for a saliva-saliva Mixture). Two laboratories also dissected the haplotypes contributing to the saliva-saliva mixture. Most of the errors were due to reading problems and misinterpretation of electropherograms, demonstrating once more that the lack of a solid devised experimental approach is the main cause of error in mtDNA testing. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The phylogenetic relationships of the order Pleuronectiformes are controversial and at some crucial points remain unresolved. To date most phylogenetic studies on this order have been based on morpho-anatomical criteria, whereas only a few sequence comparisons based studies have been reported. In the present study, the phylogenetic relationships of 30 flatfish species pertaining to seven different families were examined by sequence analysis of the first half of the 16S mitochondrial DNA gene. The results obtained did not support percoids as the sister group of pleuronectiforms. The monophyletic origin of most families analyzed, Soleidae, Scophthalmidae, Achiridae, Pleuronectidae and Bothidae, was strongly supported, except for Paralichthyidae which was clearly subdivided into two groups, one of them associated with high confidence to Pleuronectidae. The analysis of the 16S rRNA gene also suggested the monophyly of Pleuronectiforms as the most probable hypothesis and consistently supported some major interfamily groupings.
Resumo:
In most strains of Saccharomyces cerevisiae the mitochondrial gene COX1, for subunit 1 of cytochrome oxidase, contains multiple exons and introns. Processing of COX1 primary transcript requires accessory proteins factors, some of which are encoded by nuclear genes and others by reading frames residing in some of the introns of the COX1 and COB genes. Here we show that the low molecular weight protein product of open reading frame YLR204W, for which we propose the name COX24, is also involved in processing of COX1 RNA intermediates. The growth defect of cox24 mutants is partially rescued in strains harboring mitochondrial DNA lacking introns. Northern blot analyses of mitochondrial transcripts indicate cox24 null mutants to be blocked in processing of introns aI2 and aI3. The dependence of intron aI3 excision on Cox24p is also supported by the growth properties of the cox24 mutant harboring mitochondrial DNA with different intron compositions. The intermediate phenotype of the cox24 mutant in the background of intronless mitochondrial DNA, however, suggests that in addition to its role in splicing of the COX1 pre-mRNA, Cox24p still has another function. Based on the analysis of a cox14-cox24 double mutant, we propose that the other function of Cox24p is related to translation of the COX1 mRNA. © 2006 by The American Society for Biochemistry and Molecular Biology, Inc.