996 resultados para Milli-scale reactor
Resumo:
Two laboratory-scale sequencing batch reactors (SBRs) were operated for enhanced biological phosphorus removal (EBPR) in alternating anaerobic-aerobic or alternating anaerobic-anoxic modes, respectively. Polyphosphate-accumulating organisms (PAOs) were enriched in the anaerobic-aerobic SBR and denitrifying PAOs (DPAOs) were enriched in the anaerobic-aerobic SBR. Fluorescence in situ hybridization (FISH) demonstrated that the well-known PAO, Candidatus Accumulibacter phosphatis was abundant in both SBRs, and post-FISH chemical staining with 4,6-diamidino-2-phenylindol (DAPI) confirmed that they accumulated polyphosphate. When the anaerobic-anoxic SBR enriched for DPAOs was converted to anaerobic-aerobic operation, aerobic uptake of phosphorus by the resident microbial community occurred immediately. However, when the anaerobic-aerobic SBR enriched for PAOs was exposed to one cycle with anoxic rather than aerobic conditions, a 5-h lag period elapsed before phosphorus uptake proceeded. This anoxic phosphorus-uptake lag phase was not observed in the subsequent anaerobic-aerobic cycle. These results demonstrate that the PAOs that dominated the anaerobic-aerobic SBR biomass were the same organisms as the DPAOs enriched under anaerobic-anoxic conditions. (C) 2003 Wiley Periodicals, Inc.
Resumo:
An increasing number of studies shows that the glycogen-accumulating organisms (GAOs) can survive and may indeed proliferate under the alternating anaerobic/aerobic conditions found in EBPR systems, thus forming a strong competitor of the polyphosphate-accumulating organisms (PAOs). Understanding their behaviors in a mixed PAO and GAO culture under various operational conditions is essential for developing operating strategies that disadvantage the growth of this group of unwanted organisms. A model-based data analysis method is developed in this paper for the study of the anaerobic PAO and GAO activities in a mixed PAO and GAO culture. The method primarily makes use of the hydrogen ion production rate and the carbon dioxide transfer rate resulting from the acetate uptake processes by PAOs and GAOs, measured with a recently developed titration and off-gas analysis (TOGA) sensor. The method is demonstrated using the data from a laboratory-scale sequencing batch reactor (SBR) operated under alternating anaerobic and aerobic conditions. The data analysis using the proposed method strongly indicates a coexistence of PAOs and GAOs in the system, which was independently confirmed by fluorescent in situ hybridization (FISH) measurement. The model-based analysis also allowed the identification of the respective acetate uptake rates by PAOs and GAOs, along with a number of kinetic and stoichiometric parameters involved in the PAO and GAO models. The excellent fit between the model predictions and the experimental data not involved in parameter identification shows that the parameter values found are reliable and accurate. It also demonstrates that the current anaerobic PAO and GAO models are able to accurately characterize the PAO/GAO mixed culture obtained in this study. This is of major importance as no pure culture of either PAOs or GAOs has been reported to date, and hence the current PAO and GAO models were developed for the interpretation of experimental results of mixed cultures. The proposed method is readily applicable for detailed investigations of the competition between PAOs and GAOs in enriched cultures. However, the fermentation of organic substrates carried out by ordinary heterotrophs needs to be accounted for when the method is applied to the study of PAO and GAO competition in full-scale sludges. (C) 2003 Wiley Periodicals, Inc.
Resumo:
Biological nitrogen removal via nitrite pathway in wastewater treatment is very important especially in the cost of aeration and as an electron donor for denitrification. Wastewater nitrification and nitrite accumulations were carried out in a biofilm reactor. The biofilm reactor showed almost complete nitrification and most of the oxidized ammonium was present as nitrite at the ammonium load of 1.2 kg N/m3/d. Nitrite accumulation was achieved by the selective inhibition of nitrite oxidizers by free ammonia and oxygen limitation. Nitrite oxidation activity was recovered as soon as the inhibition factor was removed. Fluorescence in situ hybridization studies of the nitrite accumulating biofilm system have shown that genus Nitrosomonas which is specifically hybridized with probe NSM 156 was the dominant nitrifying bacteria while Nitrospira was less abundant than those of normal nitrification systems. Further FISH analysis showed that the combinations of Nitrosomonas and Nitrospira cells were identified as important populations of nitrifying bacteria in an autotrophic nitrifying biofilm system.
Resumo:
A new method is presented which allows the separation of the soil aggregate exterior from the aggregate core. The method employs a combination of aggregate freezing with rapid separation of aggregate exteriors using ultrasonic energy. The factors influencing the thickness of the removed aggregate surface layer include water content of the aggregate prior to freezing, temperature difference between that of the frozen aggregate and that of the liquid it is submerged in during sonification, sonification time and energy, and the type of the immersion liquid. The success of the method and the thickness of the removed aggregate surface were examined using barium ( Ba2+) as a tracer. Barium ( as BaCl2) is rapidly absorbed by soil and is present at only very low levels in natural soils. Surface layers of 0.2 - 0.4 cm thickness were successfully removed from aggregates of 1 - 4 cm diameter. Two examples are given from soils in northern NSW to demonstrate the occurrence of small- scale heterogeneity in soil chemical properties. Compared with the surface fraction, a 4 - 7% higher calcium concentration was found in the core fraction of a clay loam soil ( Dermosol). Conversely, on a cracking clay soil ( Vertosol), atrazine concentration was around 15 times greater in the aggregate surface fractions compared with core fractions. Compared with the traditional estimation of soil chemical properties on homogenised bulk soil samples, it is suggested that separate analysis of aggregate surface and core fractions could provide useful additional information on the relationships between soil properties and environmental responses.
Resumo:
Understanding the mechanism of liquid-phase evaporation in a three-phase fixed-bed reactor is of practical importance, because the reaction heat is usually 7-10 times the vaporization heat of the liquid components. Evaporation, especially the liquid dryout, can largely influence the reactor performance and even safety. To predict the vanishing condition of the liquid phase, Raoult's law was applied as a preliminary approach, with the liquid vanishing temperature defined based on a liquid flow rate of zero. While providing correct trends, Raoult's law exhibits some limitation in explaining the temperature profile in the reactor. To comprehensively understand the whole process of liquid evaporation, a set of experiments on inlet temperature, catalyst activity, liquid flow rate, gas flow rate, and operation pressure were carried out. A liquid-region length-predicting equation is suggested based on these experiments and the principle of heat balance.
Resumo:
Polymers have become the reference material for high reliability and performance applications. In this work, a multi-scale approach is proposed to investigate the mechanical properties of polymeric based material under strain. To achieve a better understanding of phenomena occurring at the smaller scales, a coupling of a Finite Element Method (FEM) and Molecular Dynamics (MD) modeling in an iterative procedure was employed, enabling the prediction of the macroscopic constitutive response. As the mechanical response can be related to the local microstructure, which in turn depends on the nano-scale structure, the previous described multi-scale method computes the stress-strain relationship at every analysis point of the macro-structure by detailed modeling of the underlying micro- and meso-scale deformation phenomena. The proposed multi-scale approach can enable prediction of properties at the macroscale while taking into consideration phenomena that occur at the mesoscale, thus offering an increased potential accuracy compared to traditional methods.
Resumo:
A numeric model has been proposed to investigate the mechanical and electrical properties of a polymeric/carbon nanotube (CNT) composite material subjected to a deformation force. The reinforcing phase affects the behavior of the polymeric matrix and depends on the nanofiber aspect ratio and preferential orientation. The simulations show that the mechanical behavior of a computer generated material (CGM) depends on fiber length and initial orientation in the polymeric matrix. It is also shown how the conductivity of the polymer/CNT composite can be calculated for each time step of applied stress, effectively providing the ability to simulate and predict strain-dependent electrical behavior of CNT nanocomposites.
Resumo:
Polymeric materials have become the reference material for high reliability and performance applications. However, their performance in service conditions is difficult to predict, due in large part to their inherent complex morphology, which leads to non-linear and anisotropic behavior, highly dependent on the thermomechanical environment under which it is processed. In this work, a multiscale approach is proposed to investigate the mechanical properties of polymeric-based material under strain. To achieve a better understanding of phenomena occurring at the smaller scales, the coupling of a finite element method (FEM) and molecular dynamics (MD) modeling, in an iterative procedure, was employed, enabling the prediction of the macroscopic constitutive response. As the mechanical response can be related to the local microstructure, which in turn depends on the nano-scale structure, this multiscale approach computes the stress-strain relationship at every analysis point of the macro-structure by detailed modeling of the underlying micro- and meso-scale deformation phenomena. The proposed multiscale approach can enable prediction of properties at the macroscale while taking into consideration phenomena that occur at the mesoscale, thus offering an increased potential accuracy compared to traditional methods.
Resumo:
This paper examines the nature of the construct of consumers' trust toward the electronic channel of their financial institution. Through a study of a total of 372 individual users of Internet banking in Spain, we have managed to develop a third-order measuring instrument that integrates a total of seven dimensions. The exploratory and confirmatory factor analyses were used to test the validation and reliability of the proposed scale. Findings provide useful information to professionals who seek to identify how customer's trust is formed in the online channel and in the financial sector.
Resumo:
Introdução: A Motor Assessment Scale (MAS) tem mostrado ser um instrumento válido e fidedigno na avaliação do progresso clínico de indivíduos que sofreram um Acidente Vascular Cerebral (AVC). Objectivos: Traduzir e adaptar a MAS à realidade portuguesa e contribuir para a validação da versão portuguesa, avaliando a sua consistência interna. Metodologia: Após um processo de tradução, revisão por peritos, retroversão e comparação com a versão original, obteve-se a versão portuguesa da MAS. Procedeu-se a um estudo correlacional transversal para avaliação da consistência interna; a amostra final incluiu 30 sujeitos, 16 do sexo masculino e 14 do sexo feminino, com idades entre os 42 e 85 anos (média de 64±11,85 anos), com hemiparésia ou hemiplegia decorrente de AVC e que realizavam fisioterapia em um de 6 Hospitais seleccionados por conveniência; a média do tempo de diagnóstico foi de 306±1322,82 dias e do tempo de fisioterapia foi de 47±57,57 dias. Resultados: Obteve-se uma média de 24±14,51 pontos nas pontuações totais e um coeficiente de Alfa de Cronbach de 0,939, sem a exclusão de qualquer item; as correlações inter item variaram entre 0,395 e 0,916. Conclusões: Apesar da reduzida amostra e da sua heterogeneidade nas características e pontuações da escala, a Versão Portuguesa da MAS apresentou uma forte consistência interna, verificando-se que os itens estão, na sua maioria, muito correlacionados entre si, o que sustenta a adequação de cada item e apoia que, de forma geral, esta escala tem uma concepção lógica e estruturada.
Resumo:
INTRODUCTION: Among psychiatric disorders schizophrenia is often said to be the condition with the most disputed definition.The Bleulerian and Schneiderian approaches have given rise to diagnostic formulations that have varied with time and place. Controversies over the concept of schizophrenia were examined within European/North American settings in the early 1970s but little has since been reported on the views of psychiatrists in developing countries. In Brazil both concepts are referred to in the literature. A scale was developed to measure adherence to Bleulerian and Schneiderian concepts among psychiatrists working in S. Paulo. METHODOLOGY: A self-reported questionnaire comprising seventeen visual analogue-scale statements related to Bleulerian and Schneiderian definitions of Shizophrenia, plus sociodemographic and training characteristics, was distributed to a non-randomised sample of 150 psychiatrists. The two sub-scales were assessed by psychometric methods for internal consistency, sub-scale structure and test-retest reliability. Items selected according to internal consistency were examined by a two-factor model exploratory factor analysis. Intraclass correlation coefficients described the stability of the scale. RESULTS: Replies were received from 117 psychiatrists (mean age 36 (SD 7.9)), 74% of whom were made and 26% female. The Schneiderian scale showed better overall internal consistency than the Bleulerian scale. Intra-class correlation coefficients for test-retest comparisons were between 0.5 and 0.7 for Schneiderian items and 0.2 and 0.7 for Bleulerian items. There was no negative association between Bleulerian and Schneiderian scale scores, suggesting that respondents may hold both concepts. Place of training was significantly associated with the respondent's opinion; disagreement with a Bleulerian standpoint predominated for those trained at the University of S. Paulo. CONCLUSIONS: The less satisfactory reliability for the Bleulerian sub-scale limits confidence in the whole scale but on the other hand this questionnaire contributes to the understanding of the controversy over Bleulerian and Schneiderian models for conceptualisation of schizophrenia, the former requiring more inference and therefore being prone to unreliability.
Resumo:
The importance of Social Responsibility (SR) is higher if this business variable is related with other ones of strategic nature in business activity (competitive success that the company achieved, performance that the firms develop and innovations that they carries out). The hypothesis is that organizations that focus on SR are those who get higher outputs and innovate more, achieving greater competitive success. A scale for measuring the orientation to SR has defined in order to determine the degree of relationship between above elements. This instrument is original because previous scales do not exist in the literature which could measure, on the one hand, the three classics sub-constructs theoretically accepted that SR is made up and, on the other hand, the relationship between SR and the other variables. As a result of causal relationships analysis we conclude with a scale of 21 indicators, validated scale with a sample of firms belonging to the Autonomous Community of Extremadura and it is the first empirical validation of these dimensions we know so far, in this context.
Resumo:
We consider a simple extension of the Standard Model by adding two Higgs triplets and a complex scalar singlet to its particle content. In this framework, the CP symmetry is spontaneously broken at high energies by the complex vacuum expectation value of the scalar singlet. Such a breaking leads to leptonic CP violation at low energies. The model also exhibits an A(4) X Z(4) flavor symmetry which, after being spontaneously broken at a high-energy scale, yields a tribimaximal pattern in the lepton sector. We consider small perturbations around the tribimaximal vacuum alignment condition in order to generate nonzero values of theta(13), as required by the latest neutrino oscillation data. It is shown that the value of theta(13) recently measured by the Daya Bay Reactor Neutrino Experiment can be accommodated in our framework together with large Dirac-type CP violation. We also address the viability of leptogenesis in our model through the out-of-equilibrium decays of the Higgs triplets. In particular, the CP asymmetries in the triplet decays into two leptons are computed and it is shown that the effective leptogenesis and low-energy CP-violating phases are directly linked.