984 resultados para Migration background
Resumo:
Results from a space experiment on bubble thermocapillary migration conducted on board the Chinese 22nd recoverable satellite were presented. Considering the temperature field in the cell was disturbed by the accumulated bubbles, the temperature gradient was corrected firstly with the help of the temperature measurement data at six points and numerical simulation. Marangoni number (Ma) of single bubble migrating in the space experiment ranged from 98.04 to 9288, exceeding that in the previous experiment data. The experiment data including the track and the velocity of two bubble thermocapillary migration showed that a smaller bubble would move slower as it was passed by a larger one, and the smaller one would even rest in a short time when the size ratio was large enough.
Resumo:
Thermocapillary motion of a drop in a uniform temperature gradient is investigated numerically. The three-dimensional incompressible Navier-Stokes and energy equations are solved by the finite-element method. The front tracking technique is employed to describe the drop interface. To simplify the calculation, the drop shape is assumed to be a sphere. It has been verified that the assumption is reasonable under the microgravity environment. Some calculations have been performed to deal with the thermocapillary motion for the drops of different sizes. It has been verified that the calculated results are in good agreement with available experimental and numerical results. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
An axisymmetric model is adopted to simulate the problem of unsteady drop thermocapillary motion for large Marangoni numbers. Front tracking methods are used in the investigation. It is found that the non-dimensional drop migration velocity will decrease with increasing Marangoni number. This agrees well with the experimental results obtained from the 4th Shen-Zhou space ship. In the meanwhile, this is also the first time for numerical simulations to verify the experimental phenomenon under large Marangoni numbers.
Resumo:
The experimental investigation of the thermocapillary drop migration in a vertical temperature gradient uns performed on ground. Silicon oil and pure soybean oil were used as experimental medium in drops and as continuous phases, respectively, in the present experiment. The drop migration, under the combined effects of buoyancy: and thermocapillarity, was studied for middle Reynolds numbers in order of magnitude O(10(1)). The drop migration velocities depending on drop diameters were obtained. The present experimental results show relatively small migration velocity in comparison with the one suggested by Young et nl. for linear theory of small Reynolds number. An example of flow patterns inside the drop was observed by PIV method.
Resumo:
The evolution of the upward migration of the magma is a nonlinear and unstable problem in mathematics. It is difficult to solve it. And using the numerical method, the solution is relatively tedious and time-consuming. This paper introduces a method of the instantaneous point source to solve the linear and unstable heat conduction equation during the infinite period of time instead of the solution of the nonlinear and unstable heat conduction equation. The results obtained by this method coincide with those by the numerical method, meaning that this method offers a simple way to solve the nonlinear and unstable heat conduction equation.
Resumo:
This report is a compilation of five regional reviews that document the global status of tropical rivers and inland fisheries in three continents: Latin America, Africa and Asia. It explores the role of ‘valuation’ methods and their contribution to policy-making and river fishery management. From the compilation, the best estimate of the global value of inland fisheries for those three continents is US$ 5.58 billion (gross market value), which is equivalent to 19 percent of the current value of annual fish exports from developing countries (US$ 29 billion) for 2004. The compilation shows that there is a general shortage of information on inland fisheries, especially derived from conventional economic valuation methods, though information from economic impact assessment methods and socio-economic and livelihood analysis methods is more widely available. The status of knowledge about the impact of changes in river management on the value of tropical river fisheries is weak and patchy. Although the impacts of large dams on the hydrology, ecology and livelihood support attributes of tropical rivers are well-recognized, there have been only few valuation studies of these issues. The document highlights the need for further valuation studies of tropical river and inland fisheries in developing countries. It underlines how vital it is for policy-makers and other stakeholders to understand the importance of these natural resources in order to make appropriate decisions concerning their role in development policy and illustrates why capacity building in valuation should become a major priority for agencies concerned with fisheries management and policy-making.
Resumo:
The purpose of this report is to present the results of the initial quantification of background water quality in each of the state's major potable aquifer systems. Results are presented and interpreted in light of the influencing factors which locally and regionally affect ambient ground-water quality. This initial data will serve as a baseline from which future sampling results can be compared. Future sampling of the Network will indicate the extent to which Florida's regional ground-water resources are improving or declining in quality. (Document has 378 pages.)
Resumo:
(121 p.)
Resumo:
An experimental investigation will be performed on the thermocapillary motion of two bubbles in Chinese return-satellite. The experiment will study the migration process of bubble caused by thermocapillary effect in microgravity environment, and their interaction between two bubbles. The bubble is driven by the thermocapillary stress on the surface on account on the variation of the surface tension with temperature. The interaction between two bubbles becomes significant as the separation distance between them is reduced drastically so that the bubble interaction has to be considered. Recently, the problem has been discussed on the method of successive reflections, and accurate migration velocities of two arbitrarily oriented bubbles were derived for the limit of small Marangoni and Reynolds numbers. Numerical results for the migration of the two bubbles show that the interaction between two bubbles has significant influence on their thermocapillary migration velocities with a bubble approaching another. However, there is a lack of experimental validate for the theoretic results. Now the experimental facility is designed for experimenting time after time. A cone-shaped top cover is used to expel bubble from the cell after experiment. But, the cone-shaped top cover can cause temperature uniformity on horizontal plane in whole cell. Therefore, a metal board with multi-holes is fixed under the top cover. The board is able to let the temperature distribution on the board uniform because of their high heat conductivity, and the bubble can pass through it. In the system two bubbles are injected into the test cell respectively by two sets of cylinder. And the bubbles sizes are controlled by two sets of step-by-step motor. It is very important problem that bubble can be divorced from the injecting mouth in microgravity environment. Thus, other two sets of device for injecting mother liquid were used to push bubble. The working principle of injecting mother liquid is to utilize pressure difference directly between test cell and reservoir