964 resultados para Michigan State University.
Board of Governors- State University System of South Florida, Academic and Student Affairs Committee
Resumo:
Board of Governors Meeting of the State University System of Florida, Academic and Student Affairs Committe Meeting held at Graham Center Ballroom, Modesto Maidique Campus, Florida International University on September 15, 2011
Resumo:
Board of Governors Meeting of the State University System of Florida, Regular Meeting Meeting held at Graham Center Ballroom, Modesto Maidique Campus, Florida International University on September 14, 2011
Resumo:
Board of Governors Meeting of the State University System of Florida, Strategic Planning Committee Part A Meeting held at Graham Center Ballroom, Modesto Maidique Campus, Florida International University on September 14, 2011
Resumo:
Board of Governors Meeting of the State University System of Florida, Facilities Committee. Meeting held at Graham Center Ballroom, Modesto Maidique Campus, Florida International University on September 14, 2011
Resumo:
The purpose of this study was to examine the factorsbehind the failure rates of Associate in Arts (AA)graduates from Miami-Dade Community College (M-DCC) transferring to the Florida State University System (SUS). In M-DCC's largest disciplines, the university failure rate was 13% for Business & Management, 13% for Computer Science, and 14% for Engineering. Hypotheses tested were: Hypothesis 1 (H1): The lower division (LD) overall cumulative GPA and/or the LD major field GPA for AA graduates are predictive of the SUS GPA for the Business Management, Computer Science, and Engineering disciplines. Hypothesis 2 (H2): Demographic variables (age, race, gender) are predictive of performance at the university among M-DCC AA graduates in Engineering, Business & Management, and Computer Science. Hypothesis 3 (H3): Administrative variables (CLAST -College Level Academic Skills Test subtests) are predictive of university performance (GPA) for the Business/Management, Engineering, and Computer Science disciplines. Hypothesis 4 (H4): LD curriculum variables (course credits, course quality points) are predictive of SUS performance for the Engineering, Business/Management and Computer Science disciplines. Multiple Regression was the inferential procedureselected for predictions. Descriptive statistics weregenerated on the predictors. Results for H1 identified the LD GPA as the most significant variable in accounting for the variability of the university GPA for the Business & Management, Computer Science, and Engineering disciplines. For H2, no significant results were obtained for theage and gender variables, but the ethnic subgroups indicated significance at the .0001 level. However, differentials in GPA may not have been due directly to the race factor but, rather, to curriculum choices and performance outcomes while in the LD. The CLAST computation variable (H3) was a significant predictor of the SUS GPA. This is most likely due to the mathematics structure pervasive in these disciplines. For H4, there were two curriculum variables significant in explaining the variability of the university GPA (number of required critical major credits completed and quality of the student's performance for these credits). Descriptive statistics on the predictors indicated that 78% of those failing in the State University System had a LD major GPA (calculated with the critical required university credits earned and quality points of these credits) of less than 3.0; and 83% of those failing at the university had an overall community college GPA of less than 3.0.
Resumo:
Report on the State University of Iowa, Iowa City, Iowa for the year ended June 30, 2015
Resumo:
Report on Iowa State University of Science and Technology, Ames, Iowa for the year ended June 30, 2015
Resumo:
Includes information on Premedical and Health Sciences programs available at Iowa State University.
Resumo:
Report on a special investigation of the Center for Agricultural Law and Taxation at Iowa State University, for the period April 1, 2009 through December 15, 2015
Resumo:
This study explores the origins and development of honors education at a Historically Black College and University (HBCU), Morgan State University, within the context of the Maryland higher education system. During the last decades, public and private institutions have invested in honors experiences for their high-ability students. These programs have become recruitment magnets while also raising institutional academic profiles, justifying additional campus resources. The history of higher education reveals simultaneous narratives such as the tension of post-desegregated Black colleges facing uncertain futures; and the progress of the rise and popularity of collegiate honors programs. Both accounts contribute to tracing seemingly parallel histories in higher education that speaks to the development of honors education at HBCUs. While the extant literature on honors development at Historically White Institutions (HWIs) of higher education has gradually emerged, our understanding of activity at HBCUs is spotty at best. One connection of these two phenomena is the development of honors programs at HBCUs. Using Morgan State University, I examine the role and purpose of honors education at a public HBCU through archival materials and oral histories. Major unexpected findings that constructed this historical narrative beyond its original scope were the impact of the 1935/6 Murray v Pearson, the first higher education desegregation case. Other emerging themes were Morgan’s decades-long efforts to resist state control of its governance, Maryland’s misuse of Morrill Act funds, and the border state’s resistance to desegregation. Also, the broader histories of Black education, racism, and Black citizenship from Dred Scott and Plessy, the 1863 Emancipation Proclamation to Brown, inform this study. As themes are threaded together, Critical Race Theory provides the framework for understanding the emerging themes. In the immediate wake of the post-desegregation era, HBCUs had to address future challenges such as purpose and mission. Competing with HWIs for high-achieving Black students was one of the unanticipated consequences of the Brown decision. Often marginalized from higher education research literature, this study will broaden the research repository of honors education by documenting HBCU contributions despite a challenging landscape.
Resumo:
Español
Resumo:
Español
Resumo:
Fire design is an essential element of the overall design procedure of structural steel members and systems. Conventionally the fire rating of load-bearing stud wall systems made of light gauge steel frames (LSF) is based on approximate prescriptive methods developed on the basis of limited fire tests. This design is limited to standard wall configurations used by the industry. Increased fire rating is provided simply by adding more plasterboards to the stud walls. This is not an acceptable situation as it not only inhibits innovation and structural and cost efficiencies but also casts doubt over the fire safety of these light gauge steel stud wall systems. Hence a detailed fire research study into the performance and effectiveness of a recently developed innovative composite panel wall system was undertaken at Queensland University of Technology using both full scale fire tests and numerical studies. Experimental results of LSF walls using the new composite panels under axial compression load have shown the improvement in fire performance and fire resistance rating. Numerical analyses are currently being undertaken using the finite element program ABAQUS. Measured temperature profiles of the studs are used in the numerical models and the results are used to calibrate against full scale test results. The validated model will be used in a detailed parametric study with an aim to develop suitable design rules within the current cold-formed steel structures and fire design standards. This paper will present the results of experimental and numerical investigations into the structural and fire behaviour of light gauge steel stud walls protected by the new composite panel. It will demonstrate the improvements provided by the new composite panel system in comparison to traditional wall systems.
Resumo:
We present initial results from observations and numerical analyses aimed at characterizing the main-belt comet P/2012 T1 (PANSTARRS). Optical monitoring observations were made between 2012 October and 2013 February using the University of Hawaii 2.2 m telescope, the Keck I telescope, the Baade and Clay Magellan telescopes, Faulkes Telescope South, the Perkins Telescope at Lowell Observatory, and the Southern Astrophysical Research Telescope. The object's intrinsic brightness approximately doubles from the time of its discovery in early October until mid-November and then decreases by ~60% between late December and early February, similar to photometric behavior exhibited by several other main-belt comets and unlike that exhibited by disrupted asteroid (596) Scheila. We also used Keck to conduct spectroscopic searches for CN emission as well as absorption at 0.7 μm that could indicate the presence of hydrated minerals, finding an upper limit CN production rate of Q CN <1.5 × 1023 mol s-1, from which we infer a water production rate of Q_H_2O100 Myr and is unlikely to be a recently implanted interloper from the outer solar system, while a search for potential asteroid family associations reveals that it is dynamically linked to the ~155 Myr old Lixiaohua asteroid family. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration, and made possible by the generous financial support of the W. M. Keck Foundation, the Magellan Telescopes located at Las Campanas Observatory, Chile, and the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the U.S. National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU).