301 resultados para Meson


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a study of the performance of the muon reconstruction in the analysis of proton–proton collisions at √s = 7TeV at theLHC, recorded by the ATLAS detector in 2010. This performance is described in terms of reconstruction and isolation efficiencies and momentum resolutions for different classes of reconstructed muons. The results are obtained from an analysis of J/ψ meson and Z boson decays to dimuons, reconstructed from a data sample corresponding to an integrated luminosity of 40 pb−1. The measured performance is compared to Monte Carlo predictions and deviations from the predicted performance are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The production of a W boson in association with a single charm quark is studied using 4.6 fb−1 of pp collision data at ps = 7TeV collected with the ATLAS detector at the Large Hadron Collider. In events in which a W boson decays to an electron or muon, the charm quark is tagged either by its semileptonic decay to a muon or by the presence of a charmed meson. The integrated and differential cross sections as a function of the pseudorapidity of the lepton from the W-boson decay are measured. Results are compared to the predictions of next-to-leading-order QCD calculations obtained from various parton distribution function parameterisations. The ratio of the strange-to-down sea-quark distributions is determined to be 0.96+0.26−0.30 at Q2 = 1.9 GeV2, which supports the hypothesis of an SU(3)-symmetric composition of the light-quark sea. Additionally, the cross-section ratio ơ(W++c)/ơ(W−+c) is compared to the predictions obtained using parton distribution function parameterisations with different assumptions about the s–s quark asymmetry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Among resummation techniques for perturbative QCD in the context of collider and flavor physics, soft-collinear effective theory (SCET) has emerged as both a powerful and versatile tool, having been applied to a large variety of processes, from B-meson decays to jet production at the LHC. This book provides a concise, pedagogical introduction to this technique. It discusses the expansion of Feynman diagrams around the high-energy limit, followed by the explicit construction of the effective Lagrangian - first for a scalar theory, then for QCD. The underlying concepts are illustrated with the quark vector form factor at large momentum transfer, and the formalism is applied to compute soft-gluon resummation and to perform transverse-momentum resummation for the Drell-Yan process utilizing renormalization group evolution in SCET. Finally, the infrared structure of n-point gauge-theory amplitudes is analyzed by relating them to effective-theory operators. This text is suitable for graduate students and non-specialist researchers alike as it requires only basic knowledge of perturbative QCD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this contribution, results from Nf = 2 lattice QCD simulations at one lattice spacing using twisted mass fermions with a clover term at the physical pion mass are presented. The mass splitting between charged and neutral pions (including the disconnected contribution) is shown to be around 20(20) MeV. Further, a first measurement using the clover twisted mass action of the average momentum fraction of the pion is given. Finally, an analysis of pseudoscalar meson masses and decay constants is presented involving linear interpolations in strange and charm quark masses. Matching to meson mass ratios allows the calculation of quark mass ratios: ms=ml = 27:63(13), mc=ml = 339:6(2:2) and mc=ms = 12:29(10). From this mass matching the quantities fK = 153:9(7:5) MeV, fD = 219(11) MeV, fDs = 255(12) MeV and MDs = 1894(93) MeV are determined without the application of finite volume or discretization artefact corrections and with errors dominated by a preliminary estimate of the lattice spacing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The E01-011 experiment at Jefferson Laboratory (JLab) studied light-to-medium mass Λ hypernuclei via the AZ + e → [special characters omitted] + e' + K+ electroproduction reaction. Precise measurement of hypernuclear ground state masses and excitation energies provides information about the nature of hyperon-nucleon interactions. Until recently, hypernuclei were studied at accelerator facilities with intense π+ and K- meson beams. The poor quality of these beams limited the resolution of the hypernuclear excitation energy spectra to about 1.5 MeV (FWHM). This resolution is not sufficient for resolving the rich structure observed in the excitation spectra. By using a high quality electron beam and employing a new high resolution spectrometer system, this study aims to improve the resolution to a few hundred keV with an absolute precision of about 100 keV for excitation energies. In this work the high-resolution excitation spectra of [special characters omitted], and [special characters omitted] hypernuclei are presented. In an attempt to emphasize the presence of the core-excited states we introduced a novel likelihood approach to particle identification (PID) to serve as an alternative to the commonly used standard hard-cut PID. The new method resulted in almost identical missing mass spectra as obtained by the standard approach. An energy resolution of approximately 400–500 keV (FWHM) has been achieved, an unprecedented value in hypernuclear reaction spectroscopy. For [special characters omitted] the core-excited configuration has been clearly observed with significant statistics. The embedded Λ hyperon increases the excitation energies of the 11B nuclear core by 0.5–1 MeV. The [special characters omitted] spectrum has been observed with significant statistics for the first time. The ground state is bound deeper by roughly 400 keV than currently predicted by theory. Indication for the core-excited doublet, which is unbound in the core itself, is observed. The measurement of [special characters omitted] provides the first study of a d-shell hypernucleus with sub-MeV resolution. Discrepancies of up to 2 MeV between measured and theoretically predicted binding energies are found. Similar disagreement exists when comparing to the [special characters omitted] mirror hypernucleus. Also the core-excited structure observed between the major s-, p- and d-shell Λ orbits is not consistent with the available theoretical calculations. In conclusion, the discrepancies found in this study will provide valuable input for the further development of theoretical models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The parity violating weak decay of hyperons offers a valuable means of measuring their polarization, providing insight into the production of strange quarks and the matter they compose. Jefferson Lab's CLAS collaboration has utilized this property of hyperons, publishing the most precise polarization measurements for the Λ and Σ in both photoproduction and electroproduction to date. In contrast, cascades, which contain two strange quarks, can only be produced through indirect processes and as a result, exhibit low cross sections thus remaining experimentally elusive.^ At present, there are two aspects in cascade physics where progress has been minimal: characterizing their production mechanism, which lacks theoretical and experimental developments, and observation of the numerous excited cascade resonances that are required to exist by flavor SU(3) F symmetry. However, CLAS data were collected in 2008 with a luminosity of 68 pb−1 using a circularly polarized photon beam with energies up to 5.45 GeV, incident on a liquid hydrogen target. This dataset is, at present, the world's largest for meson photoproduction in its energy range and provides a unique opportunity to study cascade physics with polarization measurements.^ The current analysis explores hyperon production through the γ p → K+K +Ξ− reaction by providing the first ever determination of spin observables P, Cx and Cz for the cascade. Three of our primary goals are to test the only cascade photoproduction model in existence, examine the underlying processes that give rise to hyperon polarization, and to stimulate future theoretical developments while providing constraints for their parameters. Our research is part of a broader program to understand the production of strange quarks and hadrons with strangeness. The remainder of this document discusses the motivation behind such research, the method of data collection, details of their analysis, and the significance of our results.^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The outer-crust structure and composition of a cold, non-accreting magnetar are studied. We model the outer crust to be made of fully equilibrated matter where ionized nuclei form a Coulomb crystal embedded in an electron gas. The main effects of the strong magnetic field are those of quantizing the electron motion in Landau levels and of modifying the nuclear single-particle levels producing, on average, an increased binding of nucleons in nuclei present in the Coulomb lattice. The effect of a homogeneous and constant magnetic field on nuclear masses has been predicted by using a covariant density functional in which induced currents and axial deformation due to the presence of a magnetic field that breaks time-reversal symmetry have been included self-consistently in the nucleon and meson equations of motion. Although not yet observed, for Ba 1016 G both effects contribute to produce different compositions - odd-mass nuclei are frequently predicted - and to increase the neutron-drip pressure as compared to a typical neutron star. Specifically, in such a regime, the magnetic-field effects on nuclei favor the appearance of heavier nuclei at low pressures. As B increases, such heavier nuclei are also preferred up to larger pressures. For the most extreme magnetic field considered, B=1018 G, and for the models studied, almost the whole outer crust is made of 4092Zr52.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neste trabalho de disserta¸c˜ao, investigamos os efeitos nucleares em processos de produ¸c˜ao de quarkonium no Relativistic Heavy Ion Collider (RHIC) e no Large Hadron Collider (LHC). Para tanto, consideramos o Modelo de Evapora¸c˜ao de Cor (CEM), baseado em processos partˆonicos calculados mediante a QCD perturbativa e em intera¸c˜oes n˜ao perturbativas via troca de gl´uons suaves para a forma¸c˜ao do quarkonium. Supress˜ao de quarkonium ´e um dos sinais de forma¸c˜ao do assim chamado Plasma de Quarks e Gl´uons (QGP) em colis˜oes ultrarelativ´ısticas de ´ıons pesados. No entanto, a supress˜ao n˜ao ´e somente causada em colis˜oes n´ucleo-n´ucleo (AA) devido `a forma¸c˜ao do QGP. De fato, a supress˜ao de quarkonium tamb´em foi observada em colis˜oes pr´oton-n´ucleo (pA). A fim de separar os efeitos da mat´eria quente (devidos ao QGP) e fria (efeitos n˜ao devidos ao QGP), pode-se olhar primeiro para colis˜oes pA, onde somente efeitos de mat´eria fria desempenham um papel fundamental, e depois aplicar esses efeitos em colis˜oes AA, uma vez que parte da supress˜ao ´e devido a efeitos de mat´eria fria. No regime de altas energias, a produ¸c˜ao do quarkonium ´e fortemente dependente da distribui¸c˜ao de gl´uons nuclear, o que viabiliza uma oportunidade ´unica de estudar o comportamento de pequeno x dos gl´uons dentro do n´ucleo e, consequentemente, restringir os efeitos nucleares. Estudamos os processos nucleares utilizando distintas parametriza¸c˜oes para as distribui¸c˜oes partˆonicas nucleares. Calculamos a raz˜ao nuclear para processos pA e AA em fun¸c˜ao da vari´avel rapidez para a produ¸c˜ao de quarkonium, o que permite estimar os efeitos nucleares. Al´em disso, apresentamos uma compara¸c˜ao com os dados do RHIC para a produ¸c˜ao do m´eson J/Ψ em colis˜oes pA, demonstrando que a an´alise deste observ´avel ´e uma quest˜ao em aberto na literatura. Adicionalmente, estimamos a produ¸c˜ao de quarks pesados e quarkonium na etapa inicial e durante a fase termal de uma colis˜ao ultrarelativ´ıstica de ´ıons pesados. O objetivo deste estudo ´e estimar as distintas contribui¸c˜oes para a produ¸c˜ao e de alguns efeitos do meio nuclear.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present the first results of a study on meson spectroscopy using a covariant formalism based on the Covariant Spectator Theory. Our approach is derived directly in Minkowski space and it approximates the Bethe–Salpeter equation by taking effectively into account the contributions from both ladder and crossed ladder diagrams in the $q\bar{q}$ interaction kernel. A general Lorentz structure of the kernel is tested and chiral constraints on the kernel are discussed. Results for the pion form factor are also presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Covariant Spectator Theory (CST) is used to calculate the mass spectrum and vertex functions of heavy–light and heavy mesons in Minkowski space. The covariant kernel contains Lorentz scalar, pseudoscalar, and vector contributions. The numerical calculations are performed in momentum space, where special care is taken to treat the strong singularities present in the confining kernel. The observed meson spectrum is very well reproduced after fitting a small number of model parameters. Remarkably, a fit to a few pseudoscalar meson states only, which are insensitive to spin–orbit and tensor forces and do not allow to separate the spin–spin from the central interaction, leads to essentially the same model parameters as a more general fit. This demonstrates that the covariance of the chosen interaction kernel is responsible for the very accurate prediction of the spin-dependent quark–antiquark interactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Preliminary calculations using the Covariant Spectator Theory (CST) employed a scalar linear confining interaction and an additional constant vector potential to compute the mesonic mass spectra. In this work we generalize the confining interaction to include more general structures, in particular a vector and also a pseudoscalar part, as suggested by a recent study. A one-gluon-exchange kernel is also implemented to describe the short-range part of the interaction. We solve the simplest CST approxima- tion to the complete Bethe-Salpeter equation, the one-channel spectator equation, using a numerical technique that eliminates all singularities from the kernel. The parameters of the model are determined through a fit to the experimental pseudoscalar meson spectra, with a good agreement for both quarkonia and heavy-light states.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Following up on earlier work on the $q\bar{q}$-bound-state problem using a covariant, chiral-symmetric formalism based upon the Covariant Spectator Theory, we study the heavy–light case for both pseudoscalar and vector mesons. Derived directly in Minkowski space, our approach approximates the full Bethe–Salpeter-equation, taking into account, effectively, the contributions of both ladder and crossed ladder diagrams in the kernel. Results for several mass spectra using a relativistic covariant generalization of a Cornell plus a constant potential to model the interquark interaction are given and discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The time-dependent CP asymmetries of the $B^0\to\pi^+\pi^-$ and $B^0_s\toK^+K^-$ decays and the time-integrated CP asymmetries of the $B^0\toK^+\pi^-$ and $B^0_s\to\pi^+K^-$ decays are measured, using the $p-p$ collision data collected with the LHCb detector and corresponding to the full Run2. The results are compatible with previous determinations of these quantities from LHCb, except for the CP-violation parameters of the $B^0_s\to K^+K^-$ decays, that show a discrepancy exceeding 3 standard deviations between different data-taking periods. The investigations being conducted to understand the discrepancy are documented. The measurement of the CKM matrix element $|V_{cb}|$ using $B^0_{s}\to D^{(*)-}_s\mu^+ \nu_\mu$ is also reported, using the $p-p$ collision data collected with the LHCb detector and corresponding to the full Run1. The measurement leads to $|V_{cb}| = (41.4\pm0.6\pm0.9\pm1.2)\times 10^{-3}$, where the first uncertainty is statistical, the second is systematic, and the third is due to external inputs. This measurement is compatible with the world averages and constitutes the first measurement of $|V_{cb}|$ at a hadron collider and the absolute first one with decays of the $B^0_s$ meson. The analysis also provides the very first measurements of the branching ratio and form factors parameters of the signal decay modes. The study of the characteristics ruling the response of an electromagnetic calorimeter (ECAL) to profitably operate in the high luminosity regime foreseen for the Upgrade2 of LHCb is reported in the final part of this Thesis. A fast and flexible simulation framework is developed to this purpose. Physics performance of different configurations of the ECAL are evaluated using samples of fully simulated $B^0\to \pi^+\pi^-\pi^0$ and $B^0\to K^{*0}e^+e^-$ decays. The results are used to guide the development of the future ECAL and are reported in the Framework Technical Design Report of the LHCb Upgrade2 detector.