941 resultados para Memory systems


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Entendemos por inteligencia colectiva una forma de inteligencia que surge de la colaboración y la participación de varios individuos o, siendo más estrictos, varias entidades. En base a esta sencilla definición podemos observar que este concepto es campo de estudio de las más diversas disciplinas como pueden ser la sociología, las tecnologías de la información o la biología, atendiendo cada una de ellas a un tipo de entidades diferentes: seres humanos, elementos de computación o animales. Como elemento común podríamos indicar que la inteligencia colectiva ha tenido como objetivo el ser capaz de fomentar una inteligencia de grupo que supere a la inteligencia individual de las entidades que lo forman a través de mecanismos de coordinación, cooperación, competencia, integración, diferenciación, etc. Sin embargo, aunque históricamente la inteligencia colectiva se ha podido desarrollar de forma paralela e independiente en las distintas disciplinas que la tratan, en la actualidad, los avances en las tecnologías de la información han provocado que esto ya no sea suficiente. Hoy en día seres humanos y máquinas a través de todo tipo de redes de comunicación e interfaces, conviven en un entorno en el que la inteligencia colectiva ha cobrado una nueva dimensión: ya no sólo puede intentar obtener un comportamiento superior al de sus entidades constituyentes sino que ahora, además, estas inteligencias individuales son completamente diferentes unas de otras y aparece por lo tanto el doble reto de ser capaces de gestionar esta gran heterogeneidad y al mismo tiempo ser capaces de obtener comportamientos aún más inteligentes gracias a las sinergias que los distintos tipos de inteligencias pueden generar. Dentro de las áreas de trabajo de la inteligencia colectiva existen varios campos abiertos en los que siempre se intenta obtener unas prestaciones superiores a las de los individuos. Por ejemplo: consciencia colectiva, memoria colectiva o sabiduría colectiva. Entre todos estos campos nosotros nos centraremos en uno que tiene presencia en la práctica totalidad de posibles comportamientos inteligentes: la toma de decisiones. El campo de estudio de la toma de decisiones es realmente amplio y dentro del mismo la evolución ha sido completamente paralela a la que citábamos anteriormente en referencia a la inteligencia colectiva. En primer lugar se centró en el individuo como entidad decisoria para posteriormente desarrollarse desde un punto de vista social, institucional, etc. La primera fase dentro del estudio de la toma de decisiones se basó en la utilización de paradigmas muy sencillos: análisis de ventajas e inconvenientes, priorización basada en la maximización de algún parámetro del resultado, capacidad para satisfacer los requisitos de forma mínima por parte de las alternativas, consultas a expertos o entidades autorizadas o incluso el azar. Sin embargo, al igual que el paso del estudio del individuo al grupo supone una nueva dimensión dentro la inteligencia colectiva la toma de decisiones colectiva supone un nuevo reto en todas las disciplinas relacionadas. Además, dentro de la decisión colectiva aparecen dos nuevos frentes: los sistemas de decisión centralizados y descentralizados. En el presente proyecto de tesis nos centraremos en este segundo, que es el que supone una mayor atractivo tanto por las posibilidades de generar nuevo conocimiento y trabajar con problemas abiertos actualmente así como en lo que respecta a la aplicabilidad de los resultados que puedan obtenerse. Ya por último, dentro del campo de los sistemas de decisión descentralizados existen varios mecanismos fundamentales que dan lugar a distintas aproximaciones a la problemática propia de este campo. Por ejemplo el liderazgo, la imitación, la prescripción o el miedo. Nosotros nos centraremos en uno de los más multidisciplinares y con mayor capacidad de aplicación en todo tipo de disciplinas y que, históricamente, ha demostrado que puede dar lugar a prestaciones muy superiores a otros tipos de mecanismos de decisión descentralizados: la confianza y la reputación. Resumidamente podríamos indicar que confianza es la creencia por parte de una entidad que otra va a realizar una determinada actividad de una forma concreta. En principio es algo subjetivo, ya que la confianza de dos entidades diferentes sobre una tercera no tiene porqué ser la misma. Por otro lado, la reputación es la idea colectiva (o evaluación social) que distintas entidades de un sistema tiene sobre otra entidad del mismo en lo que respecta a un determinado criterio. Es por tanto una información de carácter colectivo pero única dentro de un sistema, no asociada a cada una de las entidades del sistema sino por igual a todas ellas. En estas dos sencillas definiciones se basan la inmensa mayoría de sistemas colectivos. De hecho muchas disertaciones indican que ningún tipo de organización podría ser viable de no ser por la existencia y la utilización de los conceptos de confianza y reputación. A partir de ahora, a todo sistema que utilice de una u otra forma estos conceptos lo denominaremos como sistema de confianza y reputación (o TRS, Trust and Reputation System). Sin embargo, aunque los TRS son uno de los aspectos de nuestras vidas más cotidianos y con un mayor campo de aplicación, el conocimiento que existe actualmente sobre ellos no podría ser más disperso. Existen un gran número de trabajos científicos en todo tipo de áreas de conocimiento: filosofía, psicología, sociología, economía, política, tecnologías de la información, etc. Pero el principal problema es que no existe una visión completa de la confianza y reputación en su sentido más amplio. Cada disciplina focaliza sus estudios en unos aspectos u otros dentro de los TRS, pero ninguna de ellas trata de explotar el conocimiento generado en el resto para mejorar sus prestaciones en su campo de aplicación concreto. Aspectos muy detallados en algunas áreas de conocimiento son completamente obviados por otras, o incluso aspectos tratados por distintas disciplinas, al ser estudiados desde distintos puntos de vista arrojan resultados complementarios que, sin embargo, no son aprovechados fuera de dichas áreas de conocimiento. Esto nos lleva a una dispersión de conocimiento muy elevada y a una falta de reutilización de metodologías, políticas de actuación y técnicas de una disciplina a otra. Debido su vital importancia, esta alta dispersión de conocimiento se trata de uno de los principales problemas que se pretenden resolver con el presente trabajo de tesis. Por otro lado, cuando se trabaja con TRS, todos los aspectos relacionados con la seguridad están muy presentes ya que muy este es un tema vital dentro del campo de la toma de decisiones. Además también es habitual que los TRS se utilicen para desempeñar responsabilidades que aportan algún tipo de funcionalidad relacionada con el mundo de la seguridad. Por último no podemos olvidar que el acto de confiar está indefectiblemente unido al de delegar una determinada responsabilidad, y que al tratar estos conceptos siempre aparece la idea de riesgo, riesgo de que las expectativas generadas por el acto de la delegación no se cumplan o se cumplan de forma diferente. Podemos ver por lo tanto que cualquier sistema que utiliza la confianza para mejorar o posibilitar su funcionamiento, por su propia naturaleza, es especialmente vulnerable si las premisas en las que se basa son atacadas. En este sentido podemos comprobar (tal y como analizaremos en más detalle a lo largo del presente documento) que las aproximaciones que realizan las distintas disciplinas que tratan la violación de los sistemas de confianza es de lo más variado. únicamente dentro del área de las tecnologías de la información se ha intentado utilizar alguno de los enfoques de otras disciplinas de cara a afrontar problemas relacionados con la seguridad de TRS. Sin embargo se trata de una aproximación incompleta y, normalmente, realizada para cumplir requisitos de aplicaciones concretas y no con la idea de afianzar una base de conocimiento más general y reutilizable en otros entornos. Con todo esto en cuenta, podemos resumir contribuciones del presente trabajo de tesis en las siguientes. • La realización de un completo análisis del estado del arte dentro del mundo de la confianza y la reputación que nos permite comparar las ventajas e inconvenientes de las diferentes aproximación que se realizan a estos conceptos en distintas áreas de conocimiento. • La definición de una arquitectura de referencia para TRS que contempla todas las entidades y procesos que intervienen en este tipo de sistemas. • La definición de un marco de referencia para analizar la seguridad de TRS. Esto implica tanto identificar los principales activos de un TRS en lo que respecta a la seguridad, así como el crear una tipología de posibles ataques y contramedidas en base a dichos activos. • La propuesta de una metodología para el análisis, el diseño, el aseguramiento y el despliegue de un TRS en entornos reales. Adicionalmente se exponen los principales tipos de aplicaciones que pueden obtenerse de los TRS y los medios para maximizar sus prestaciones en cada una de ellas. • La generación de un software que permite simular cualquier tipo de TRS en base a la arquitectura propuesta previamente. Esto permite evaluar las prestaciones de un TRS bajo una determinada configuración en un entorno controlado previamente a su despliegue en un entorno real. Igualmente es de gran utilidad para evaluar la resistencia a distintos tipos de ataques o mal-funcionamientos del sistema. Además de las contribuciones realizadas directamente en el campo de los TRS, hemos realizado aportaciones originales a distintas áreas de conocimiento gracias a la aplicación de las metodologías de análisis y diseño citadas con anterioridad. • Detección de anomalías térmicas en Data Centers. Hemos implementado con éxito un sistema de deteción de anomalías térmicas basado en un TRS. Comparamos la detección de prestaciones de algoritmos de tipo Self-Organized Maps (SOM) y Growing Neural Gas (GNG). Mostramos como SOM ofrece mejores resultados para anomalías en los sistemas de refrigeración de la sala mientras que GNG es una opción más adecuada debido a sus tasas de detección y aislamiento para casos de anomalías provocadas por una carga de trabajo excesiva. • Mejora de las prestaciones de recolección de un sistema basado en swarm computing y odometría social. Gracias a la implementación de un TRS conseguimos mejorar las capacidades de coordinación de una red de robots autónomos distribuidos. La principal contribución reside en el análisis y la validación de las mejoras increméntales que pueden conseguirse con la utilización apropiada de la información existente en el sistema y que puede ser relevante desde el punto de vista de un TRS, y con la implementación de algoritmos de cálculo de confianza basados en dicha información. • Mejora de la seguridad de Wireless Mesh Networks contra ataques contra la integridad, la confidencialidad o la disponibilidad de los datos y / o comunicaciones soportadas por dichas redes. • Mejora de la seguridad de Wireless Sensor Networks contra ataques avanzamos, como insider attacks, ataques desconocidos, etc. Gracias a las metodologías presentadas implementamos contramedidas contra este tipo de ataques en entornos complejos. En base a los experimentos realizados, hemos demostrado que nuestra aproximación es capaz de detectar y confinar varios tipos de ataques que afectan a los protocoles esenciales de la red. La propuesta ofrece unas velocidades de detección muy altas así como demuestra que la inclusión de estos mecanismos de actuación temprana incrementa significativamente el esfuerzo que un atacante tiene que introducir para comprometer la red. Finalmente podríamos concluir que el presente trabajo de tesis supone la generación de un conocimiento útil y aplicable a entornos reales, que nos permite la maximización de las prestaciones resultantes de la utilización de TRS en cualquier tipo de campo de aplicación. De esta forma cubrimos la principal carencia existente actualmente en este campo, que es la falta de una base de conocimiento común y agregada y la inexistencia de una metodología para el desarrollo de TRS que nos permita analizar, diseñar, asegurar y desplegar TRS de una forma sistemática y no artesanal y ad-hoc como se hace en la actualidad. ABSTRACT By collective intelligence we understand a form of intelligence that emerges from the collaboration and competition of many individuals, or strictly speaking, many entities. Based on this simple definition, we can see how this concept is the field of study of a wide range of disciplines, such as sociology, information science or biology, each of them focused in different kinds of entities: human beings, computational resources, or animals. As a common factor, we can point that collective intelligence has always had the goal of being able of promoting a group intelligence that overcomes the individual intelligence of the basic entities that constitute it. This can be accomplished through different mechanisms such as coordination, cooperation, competence, integration, differentiation, etc. Collective intelligence has historically been developed in a parallel and independent way among the different disciplines that deal with it. However, this is not enough anymore due to the advances in information technologies. Nowadays, human beings and machines coexist in environments where collective intelligence has taken a new dimension: we yet have to achieve a better collective behavior than the individual one, but now we also have to deal with completely different kinds of individual intelligences. Therefore, we have a double goal: being able to deal with this heterogeneity and being able to get even more intelligent behaviors thanks to the synergies that the different kinds of intelligence can generate. Within the areas of collective intelligence there are several open topics where they always try to get better performances from groups than from the individuals. For example: collective consciousness, collective memory, or collective wisdom. Among all these topics we will focus on collective decision making, that has influence in most of the collective intelligent behaviors. The field of study of decision making is really wide, and its evolution has been completely parallel to the aforementioned collective intelligence. Firstly, it was focused on the individual as the main decision-making entity, but later it became involved in studying social and institutional groups as basic decision-making entities. The first studies within the decision-making discipline were based on simple paradigms, such as pros and cons analysis, criteria prioritization, fulfillment, following orders, or even chance. However, in the same way that studying the community instead of the individual meant a paradigm shift within collective intelligence, collective decision-making means a new challenge for all the related disciplines. Besides, two new main topics come up when dealing with collective decision-making: centralized and decentralized decision-making systems. In this thesis project we focus in the second one, because it is the most interesting based on the opportunities to generate new knowledge and deal with open issues in this area, as well as these results can be put into practice in a wider set of real-life environments. Finally, within the decentralized collective decision-making systems discipline, there are several basic mechanisms that lead to different approaches to the specific problems of this field, for example: leadership, imitation, prescription, or fear. We will focus on trust and reputation. They are one of the most multidisciplinary concepts and with more potential for applying them in every kind of environments. Besides, they have historically shown that they can generate better performance than other decentralized decision-making mechanisms. Shortly, we say trust is the belief of one entity that the outcome of other entities’ actions is going to be in a specific way. It is a subjective concept because the trust of two different entities in another one does not have to be the same. Reputation is the collective idea (or social evaluation) that a group of entities within a system have about another entity based on a specific criterion. Thus, it is a collective concept in its origin. It is important to say that the behavior of most of the collective systems are based on these two simple definitions. In fact, a lot of articles and essays describe how any organization would not be viable if the ideas of trust and reputation did not exist. From now on, we call Trust an Reputation System (TRS) to any kind of system that uses these concepts. Even though TRSs are one of the most common everyday aspects in our lives, the existing knowledge about them could not be more dispersed. There are thousands of scientific works in every field of study related to trust and reputation: philosophy, psychology, sociology, economics, politics, information sciences, etc. But the main issue is that a comprehensive vision of trust and reputation for all these disciplines does not exist. Every discipline focuses its studies on a specific set of topics but none of them tries to take advantage of the knowledge generated in the other disciplines to improve its behavior or performance. Detailed topics in some fields are completely obviated in others, and even though the study of some topics within several disciplines produces complementary results, these results are not used outside the discipline where they were generated. This leads us to a very high knowledge dispersion and to a lack in the reuse of methodologies, policies and techniques among disciplines. Due to its great importance, this high dispersion of trust and reputation knowledge is one of the main problems this thesis contributes to solve. When we work with TRSs, all the aspects related to security are a constant since it is a vital aspect within the decision-making systems. Besides, TRS are often used to perform some responsibilities related to security. Finally, we cannot forget that the act of trusting is invariably attached to the act of delegating a specific responsibility and, when we deal with these concepts, the idea of risk is always present. This refers to the risk of generated expectations not being accomplished or being accomplished in a different way we anticipated. Thus, we can see that any system using trust to improve or enable its behavior, because of its own nature, is especially vulnerable if the premises it is based on are attacked. Related to this topic, we can see that the approaches of the different disciplines that study attacks of trust and reputation are very diverse. Some attempts of using approaches of other disciplines have been made within the information science area of knowledge, but these approaches are usually incomplete, not systematic and oriented to achieve specific requirements of specific applications. They never try to consolidate a common base of knowledge that could be reusable in other context. Based on all these ideas, this work makes the following direct contributions to the field of TRS: • The compilation of the most relevant existing knowledge related to trust and reputation management systems focusing on their advantages and disadvantages. • We define a generic architecture for TRS, identifying the main entities and processes involved. • We define a generic security framework for TRS. We identify the main security assets and propose a complete taxonomy of attacks for TRS. • We propose and validate a methodology to analyze, design, secure and deploy TRS in real-life environments. Additionally we identify the principal kind of applications we can implement with TRS and how TRS can provide a specific functionality. • We develop a software component to validate and optimize the behavior of a TRS in order to achieve a specific functionality or performance. In addition to the contributions made directly to the field of the TRS, we have made original contributions to different areas of knowledge thanks to the application of the analysis, design and security methodologies previously presented: • Detection of thermal anomalies in Data Centers. Thanks to the application of the TRS analysis and design methodologies, we successfully implemented a thermal anomaly detection system based on a TRS.We compare the detection performance of Self-Organized- Maps and Growing Neural Gas algorithms. We show how SOM provides better results for Computer Room Air Conditioning anomaly detection, yielding detection rates of 100%, in training data with malfunctioning sensors. We also show that GNG yields better detection and isolation rates for workload anomaly detection, reducing the false positive rate when compared to SOM. • Improving the performance of a harvesting system based on swarm computing and social odometry. Through the implementation of a TRS, we achieved to improve the ability of coordinating a distributed network of autonomous robots. The main contribution lies in the analysis and validation of the incremental improvements that can be achieved with proper use information that exist in the system and that are relevant for the TRS, and the implementation of the appropriated trust algorithms based on such information. • Improving Wireless Mesh Networks security against attacks against the integrity, confidentiality or availability of data and communications supported by these networks. Thanks to the implementation of a TRS we improved the detection time rate against these kind of attacks and we limited their potential impact over the system. • We improved the security of Wireless Sensor Networks against advanced attacks, such as insider attacks, unknown attacks, etc. Thanks to the TRS analysis and design methodologies previously described, we implemented countermeasures against such attacks in a complex environment. In our experiments we have demonstrated that our system is capable of detecting and confining various attacks that affect the core network protocols. We have also demonstrated that our approach is capable of rapid attack detection. Also, it has been proven that the inclusion of the proposed detection mechanisms significantly increases the effort the attacker has to introduce in order to compromise the network. Finally we can conclude that, to all intents and purposes, this thesis offers a useful and applicable knowledge in real-life environments that allows us to maximize the performance of any system based on a TRS. Thus, we deal with the main deficiency of this discipline: the lack of a common and complete base of knowledge and the lack of a methodology for the development of TRS that allow us to analyze, design, secure and deploy TRS in a systematic way.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Evidence indicates that the modulatory effects of the adrenergic stress hormone epinephrine as well as several other neuromodulatory systems on memory storage are mediated by activation of β-adrenergic mechanisms in the amygdala. In view of our recent findings indicating that the amygdala is involved in mediating the effects of glucocorticoids on memory storage, the present study examined whether the glucocorticoid-induced effects on memory storage depend on β-adrenergic activation within the amygdala. Microinfusions (0.5 μg in 0.2 μl) of either propranolol (a nonspecific β-adrenergic antagonist), atenolol (a β1-adrenergic antagonist), or zinterol (a β2-adrenergic antagonist) administered bilaterally into the basolateral nucleus of the amygdala (BLA) of male Sprague–Dawley rats 10 min before training blocked the enhancing effect of posttraining systemic injections of dexamethasone (0.3 mg/kg) on 48-h memory for inhibitory avoidance training. Infusions of these β-adrenergic antagonists into the central nucleus of the amygdala did not block the dexamethasone-induced memory enhancement. Furthermore, atenolol (0.5 μg) blocked the memory-enhancing effects of the specific glucocorticoid receptor (GR or type II) agonist RU 28362 infused concurrently into the BLA immediately posttraining. These results strongly suggest that β-adrenergic activation is an essential step in mediating glucocorticoid effects on memory storage and that the BLA is a locus of interaction for these two systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cholinergic transmission at muscarinic acetylcholine receptors (mAChR) has been implicated in higher brain functions such as learning and memory, and loss of synapses may contribute to the symptoms of Alzheimer disease. A heterogeneous family of five genetically distinct mAChR subtypes differentially modulate a variety of intracellular signaling systems as well as the processing of key molecules involved in the pathology of the disease. Although many muscarinic effects have been identified in memory circuits, including a diversity of pre- and post-synaptic actions in hippocampus, the identities of the molecular subtypes responsible for any given function remain elusive. All five mAChR genes are expressed in hippocampus, and subtype-specific antibodies have enabled identification, quantification, and localization of the encoded proteins. The m1, m2, and m4 mAChR proteins are most abundant in forebrain regions and they have distinct cellular and subcellular localizations suggestive of various pre- and postsynaptic functions in cholinergic circuits. The subtypes are also differentially altered in postmortem brain samples from Alzheimer disease cases. Further understanding of the molecular pharmacology of failing synapses in Alzheimer disease, together with the development of new subtype-selective drugs, may provide more specific and effective treatments for the disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study examined glucocorticoid-adrenergic interactions in modulating acquisition and memory storage for inhibitory avoidance training. Systemically (s.c.) administered amphetamine (1 mg/kg), but not epinephrine (0.1 mg/kg) or the peripherally acting amphetamine derivative 4-OH amphetamine (2 mg/kg), given to rats shortly before training facilitated acquisition performance in a continuous multiple-trial inhibitory avoidance (CMIA) task. Adrenocortical suppression with the 11beta-hydroxylase inhibitor metyrapone (50 mg/kg; s.c.), given to rats 90 min before training, did not block the effect of amphetamine and did not affect acquisition performance of otherwise untreated animals. Retention of CMIA and one-trial inhibitory avoidance was enhanced by either pre- or posttraining injections of amphetamine as well as 4-OH amphetamine and epinephrine. The finding that injections of amphetamine and epinephrine have comparable effects on memory is consistent with the view that amphetamine may modulate memory storage, at least in part, by inducing the release of epinephrine from the adrenal medulla. Metyrapone pretreatment blocked the memory-enhancing effects of amphetamine, 4-OH amphetamine, and epinephrine but did not affect retention performance of otherwise untreated animals. Posttraining injections of different doses of epinephrine (ranging from 0.0001 to 1.0 mg/kg) produced a dose-dependent memory enhancement for inhibitory avoidance training and metyrapone blocked the memory-enhancing effects of all these doses. These findings provide further evidence that the sympathoadrenal and adrenocortical systems are intimately coupled during processes of memory storage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The current trend in the evolution of sensor systems seeks ways to provide more accuracy and resolution, while at the same time decreasing the size and power consumption. The use of Field Programmable Gate Arrays (FPGAs) provides specific reprogrammable hardware technology that can be properly exploited to obtain a reconfigurable sensor system. This adaptation capability enables the implementation of complex applications using the partial reconfigurability at a very low-power consumption. For highly demanding tasks FPGAs have been favored due to the high efficiency provided by their architectural flexibility (parallelism, on-chip memory, etc.), reconfigurability and superb performance in the development of algorithms. FPGAs have improved the performance of sensor systems and have triggered a clear increase in their use in new fields of application. A new generation of smarter, reconfigurable and lower power consumption sensors is being developed in Spain based on FPGAs. In this paper, a review of these developments is presented, describing as well the FPGA technologies employed by the different research groups and providing an overview of future research within this field.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The neurotransmitter dopamine (DA) plays an essential role in reward-related incentive learning, whereby neutral stimuli gain the ability to elicit approach and other responses. In an incentive learning paradigm called conditioned activity, animals receive a stimulant drug in a specific environment over the course of several days. When then placed in that environment drug-free, they generally display a conditioned hyperactive response. Modulating DA transmission at different time points during the paradigm has been shown to disrupt or enhance conditioning effects. For instance, blocking DA D2 receptors before sessions generally impedes the acquisition of conditioned activity. To date, no studies have examined the role of D2 receptors in the consolidation phase of conditioned activity; this phase occurs immediately after acquisition and involves the stabilization of memories for long-term storage. To investigate this possible role, I trained Wistar rats (N = 108) in the conditioned activity paradigm produced by amphetamine (2.0 mg/kg, intraperitoneally) to examine the effects of the D2 antagonist haloperidol (doses 0.10, 0.25, 0.50, 0.75, 1.0, & 2.0 mg/kg, intraperitoneally) administered 5 min after conditioning sessions. Two positive control groups received haloperidol 1 h before conditioning sessions (doses 1.0 mg/kg and 2.0 mg/kg). The results revealed that post-session haloperidol at all doses tested did not disrupt the consolidation of conditioned activity, while pre-session haloperidol at 2.0 mg/kg prevented acquisition, with the 1.0 mg/kg group trending toward a block. Additionally, post-session haloperidol did not diminish activity during conditioning days, unlike pre-session haloperidol. One possible reason for these findings is that the consolidation phase may have begun earlier than when haloperidol was administered, since the conditioned activity paradigm uses longer learning sessions than those generally used in consolidation studies. Future studies may test if conditioned activity can be achieved with shorter sessions; if so, haloperidol would then be re-tested at an earlier time point. D2 receptor second messenger systems may also be investigated in consolidation. Since drug-related incentive stimuli can evoke cravings in those with drug addiction, a better understanding of the mechanisms of incentive learning may lead to the development of solutions for these individuals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

"Supported in part by Atomic Energy Commission Contract AT(11-1)-1469."

Relevância:

30.00% 30.00%

Publicador:

Resumo:

"August 1973."

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present study, NaSi-l sulphate transporter knock-out (Nas1-/-) mice, an animal model of hyposulphataernia, were examined for spatial memory and learning in a Morris water maze, and for olfactory function in a cookie test. The Nas1-/- mice displayed significantly (P < 0.05) increased latencies to find an escape platform in the reversal teaming trials at 2 days but not 1 day after the last acquisition trial in a Morris water maze test. suggesting that Nas1-/- mice may have proactive memory interference. While the wild-type (Ncis1+/+) mice showed a significant (P < 0.02) decrease in time to locate a hidden food reward over four trials after overnight fasting, Nas1-/- mice did not change their performance, resulting in significantly (P < 0.05) higher latencies when compared to their Nas1+/+ littermates. There were no significant differences between Nas1-/- and Nas1+/+ mice in the cookie test after moderate food deprivation. In addition, both Nas1-/- and Nas1+/+ mice displayed similar escape latencies in the acquisition phase of the Morris water maze test, suggesting that learning, motivation, vision and motor skills required for the task may not be affected in Nas1-/- mice. This is the first study to demonstrate an impairment in memory and olfactory performance in the hyposulphataemic Nas1-/- mouse. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis work we develop a new generative model of social networks belonging to the family of Time Varying Networks. The importance of correctly modelling the mechanisms shaping the growth of a network and the dynamics of the edges activation and inactivation are of central importance in network science. Indeed, by means of generative models that mimic the real-world dynamics of contacts in social networks it is possible to forecast the outcome of an epidemic process, optimize the immunization campaign or optimally spread an information among individuals. This task can now be tackled taking advantage of the recent availability of large-scale, high-quality and time-resolved datasets. This wealth of digital data has allowed to deepen our understanding of the structure and properties of many real-world networks. Moreover, the empirical evidence of a temporal dimension in networks prompted the switch of paradigm from a static representation of graphs to a time varying one. In this work we exploit the Activity-Driven paradigm (a modeling tool belonging to the family of Time-Varying-Networks) to develop a general dynamical model that encodes fundamental mechanism shaping the social networks' topology and its temporal structure: social capital allocation and burstiness. The former accounts for the fact that individuals does not randomly invest their time and social interactions but they rather allocate it toward already known nodes of the network. The latter accounts for the heavy-tailed distributions of the inter-event time in social networks. We then empirically measure the properties of these two mechanisms from seven real-world datasets and develop a data-driven model, analytically solving it. We then check the results against numerical simulations and test our predictions with real-world datasets, finding a good agreement between the two. Moreover, we find and characterize a non-trivial interplay between burstiness and social capital allocation in the parameters phase space. Finally, we present a novel approach to the development of a complete generative model of Time-Varying-Networks. This model is inspired by the Kaufman's adjacent possible theory and is based on a generalized version of the Polya's urn. Remarkably, most of the complex and heterogeneous feature of real-world social networks are naturally reproduced by this dynamical model, together with many high-order topological properties (clustering coefficient, community structure etc.).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Thouless-Anderson-Palmer (TAP) approach was originally developed for analysing the Sherrington-Kirkpatrick model in the study of spin glass models and has been employed since then mainly in the context of extensively connected systems whereby each dynamical variable interacts weakly with the others. Recently, we extended this method for handling general intensively connected systems where each variable has only O(1) connections characterised by strong couplings. However, the new formulation looks quite different with respect to existing analyses and it is only natural to question whether it actually reproduces known results for systems of extensive connectivity. In this chapter, we apply our formulation of the TAP approach to an extensively connected system, the Hopfield associative memory model, showing that it produces identical results to those obtained by the conventional formulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study memory effects in a kinetic roughening model. For d=1, a different dynamic scaling is uncovered in the memory dominated phases; the Kardar-Parisi-Zhang scaling is restored in the absence of noise. dc=2 represents the critical dimension where memory is shown to smoothen the roughening front (a=0). Studies on a discrete atomistic model in the same universality class reconfirm the analytical results in the large time limit, while a different scaling behavior shows up for tmemory characteristic of the atomistic model. Results can be generalized for other nonconservative systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A nature inspired decentralised multi-agent algorithm is proposed to solve a problem of distributed task selection in which cities produce and store batches of different mail types. Agents must collect and process the mail batches, without a priori knowledge of the available mail at the cities or inter-agent communication. In order to process a different mail type than the previous one, agents must undergo a change-over during which it remains inactive. We propose a threshold based algorithm in order to maximise the overall efficiency (the average amount of mail collected). We show that memory, i.e. the possibility for agents to develop preferences for certain cities, not only leads to emergent cooperation between agents, but also to a significant increase in efficiency (above the theoretical upper limit for any memoryless algorithm), and we systematically investigate the influence of the various model parameters. Finally, we demonstrate the flexibility of the algorithm to changes in circumstances, and its excellent scalability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper explores the role of transactive memory in enabling knowledge transfer between globally distributed teams. While the information systems literature has recently acknowledged the role transactive memory plays in improving knowledge processes and performance in colocated teams, little is known about its contribution to distributed teams. To contribute to filling this gap, knowledge-transfer challenges and processes between onsite and offshore teams were studied at TATA Consultancy Services. In particular, the paper describes the transfer of knowledge between onsite and offshore teams through encoding, storing and retrieving processes. An in-depth case study of globally distributed software development projects was carried out, and a qualitative, interpretive approach was adopted. The analysis of the case suggests that in order to overcome differences derived from the local contexts of the onsite and offshore teams (e.g. different work routines, methodologies and skills), some specific mechanisms supporting the development of codified and personalized ‘directories’ were introduced. These include the standardization of templates and methodologies across the remote sites as well as frequent teleconferencing sessions and occasional short visits. These mechanisms contributed to the development of the notion of ‘who knows what’ across onsite and offshore teams despite the challenges associated with globally distributed teams, and supported the transfer of knowledge between onsite and offshore teams. The paper concludes by offering theoretical and practical implications.