881 resultados para Membranes canaliculaires
Resumo:
Cooling of the mechanical motion of a GaAs nano-membrane using the photothermal effect mediated by excitons was recently demonstrated by some of the authors (Usami et al 2012 Nature Phys. 8 168) and provides a clear example of the use of thermal forces to cool down mechanical motion. Here, we report on a single-free-parameter theoretical model to explain the results of this experiment which matches the experimental data remarkably well.
Resumo:
The permeability of the outer membrane (OM) to hydrophobic probes and its susceptibility to bactericidal cationic peptides were investigated for natural rough Brucella ovis and for mutant rough Brucella abortus strains. The OM of B. ovis displayed an abrupt and faster kinetic profile than rough B. abortus during the uptake of the hydrophobic probe N-phenyl-naphthylamine. B. ovis was more sensitive than rough B. abortus to the action of cationic peptides. Bactenecins 5 and 7 induced morphological alterations on the OMs of both rough Brucella strains. B. ovis lipopolysaccharide (LPS) captured considerably more polymyxin B than LPSs from both rough and smooth B. abortus strains. Polymyxin B, poly-L-lysine, and poly-L-ornithine produced a thick coating on the surfaces of both strains, which was more evident in B. ovis than in rough B. abortus. The distinct functional properties of the OMs of these two rough strains correlate with some structural differences of their OMs and with their different biological behaviors in animals and culture cells.
Resumo:
Background/aims - Epiretinal and retrolental proliferation may occur during prolonged use of the novel tamponade agent perfluorohexyloctane (F H ). This study aims to determine whether there is any histological evidence that F H has a role in the formation of these membranes. Methods - Eight epiretinal membranes and three opaque posterior lens capsules were excised from patients in whom F H had been used as a long term retinal tamponade agent. The membranes and capsules were examined employing light microscopic methods, including immunohistochemistry. Results - The epiretinal membranes showed histological features typical of proliferative vitreoretinopathy (PVR) epiretinal membranes, but they also exhibited a dense macrophagic infiltration. In addition, three of the membranes contained multinucleated cells. Macrophages represented up to 30% of the cells present and appeared to contain large intracytoplasmic vacuoles. Similar cells were seen on the back of the posterior lens capsule in one specimen and all three capsules had posterior migration of lens epithelium. Conclusion - The pathological findings are not simply those of PVR. The macrophage infiltration suggests that there may be a biological reaction to F H which could reflect its surmised propensity to emulsify. Further investigations concerning the cellular response to this promising tamponade agent are warranted.
Resumo:
This investigation was designed to determine whether low dose radiation to the macular region could influence the natural course of age-related subfoveal neovascularisation. Nineteen patients with subfoveal membranes due to age-related macular degeneration (ARMD) were treated with 10 or 15 Gy of 6 MV photons and seven patients who declined treatment were followed up as controls. Six controls and all treated patients had completed follow up times of at least 12 months. Visual acuity was maintained or improved in 78% and 63% of treated patients at their 6 and 12 month follow up examinations respectively. By contrast visual acuity showed steady deterioration in six of seven controls. Significant neovascular membrane regression, as measured by image analysis, was recorded in 68% and 77% of treated patients at 6 and 12 months post-radiation, whereas the membranes in all seven control patients showed progressive enlargement. This study suggests that low doses of radiation can maintain central vision and induce regression of subfoveal neovascular membranes of ARMD in a significant proportion of patients. We now believe it appropriate to proceed to a prospective randomised study to test this hypothesis further.
Resumo:
A carbon nanotube free-standing linearly dichroic polariser is developed using solid-state extrusion. Membrane cohesion is experimentally and numerically demonstrated to derive from inter-tube van der Waals interactions in this family of planar metastable morphologies, controlled by the chemical vapour deposition conditions. Ultra-broadband polarisation (400 nm – 2.5 mm) is shown and corroborated by effective medium and full numerical simulations.
Resumo:
Kinetic demixing and decomposition were studied on three La0.6Sr0.4Co0.2Fe0.8O3- δ oxygen-separation hollow fibre membrane modules, which were operated under a 0.21/0.009bar oxygen partial pressure difference at 950°C for 1128, 3672 and 5512h, respectively. The post-operation membranes were characterized by Secondary Ion Mass Spectrometry, Scanning Electronic Microscope, Energy Dispersive Spectrum and X-ray Diffraction. The occurrence of kinetic demixing and decomposition was confirmed through the microstructural evolution of the membranes. Secondary-phase grains were found on the air-side surface of the membranes after the long-term operation and Co and Fe enrichment as well as La depletion was found on the surface and in the bulk at the air side. Cation diffusivities were found to be in the order Co>Fe>Sr>La. Kinetic demixing and decomposition rates of the membranes at the air side were found to be self-accelerating with time; the role of A-site deficiency in the perovskite lattice in the bulk near the air side surface is implicated in the mechanism. The oxygen permeability was not affected by the kinetic demixing and decomposition of the material during long-term operation (up to 5512h), however, we may expect permeability to be affected by secondary phase formation on the air-side surface at even longer operational times. © 2010 Elsevier B.V.
Resumo:
The use of wireless electrochemical promotion of catalysis (EPOC) of a Pt catalyst supported on a mixed ionic electronic conducting hollow fibre membranes is investigated. This reactor configuration offers high surface areas per unit volume and is ideally suited for scaled-up applications. The MIEC membrane used is the La 0.6Sr 0.4Co 0.2Fe 0.8O 3 perovskite (LSCF) with a Pt catalyst film deposited on the outer surface of the LSCF membrane. Experimental results showed that after initial catalyst deactivation (in the absence of an oxygen chemical potential difference across the membrane) the catalytic rate can be enhanced by using an oxygen sweep and wireless EPOC can be used for the in situ regeneration of a deactivated catalyst. © 2012 Elsevier B.V.
Resumo:
A solid-state electrochemical reactor with ceramic proton-conducting membrane has been used to study the effect of electrochemically induced hydrogen spillover on the catalytic activity of platinum during ethylene oxidation. Suitable proton-conducting electrolyte membranes (Gd-doped BaPrO 3 (BPG) and Y-doped BaZrO3 (BZY)) were fabricated. These materials were chosen because of their protonic conductivity in the operational temperature region of the reaction (400-700 °C). The BZY-based electrochemical cell was used to investigate the open-circuit voltage (OCV) dependence on H2 partial pressure with comparison being made to the theoretical OCV as predicted by the Nernst equation. Furthermore, the BZY pellets were used to study the effect of proton transfer of the catalytic activity of platinum during ethylene oxidation. The reaction was found to exhibit electrochemical promotion at 400 °C and to be electrophilic in nature, i.e. proton addition to the platinum surface resulted in an increase in reaction rate. At higher temperatures, the rate was not affected, within experimental error, by proton addition or removal. Under similar conditions, AC impedance showed that there was a large overall cell resistance at 400 °C with significantly decreased resistance at higher temperatures. It is possible that there could be a relationship between large cell resistances and the onset of electrochemical promotion in this system but there is, as yet, no conclusive evidence for this. © 2003 Elsevier B.V. All rights reserved.
Resumo:
Retrograde transport links early/recycling endosomes to the trans-Golgi network (TGN), thereby connecting the endocytic and the biosynthetic/secretory pathways. To determine how internalized molecules are targeted to the retrograde route, we have interfered with the function of clathrin and that of two proteins that interact with it, AP1 and epsinR. We found that the glycosphingolipid binding bacterial Shiga toxin entered cells efficiently when clathrin expression was inhibited. However, retrograde transport of Shiga toxin to the TGN was strongly inhibited. This allowed us to show that for Shiga toxin, retrograde sorting on early/recycling endosomes depends on clathrin and epsinR, but not AP1. EpsinR was also involved in retrograde transport of two endogenous proteins, TGN38/46 and mannose 6-phosphate receptor. In conclusion, our work reveals the existence of clathrin-independent and -dependent transport steps in the retrograde route, and establishes a function for clathrin and epsinR at the endosome-TGN interface.