975 resultados para Mean-field model
Resumo:
This paper describes a new 2D model for the photospheric evolution of the magnetic carpet. It is the first in a series of papers working towards constructing a realistic 3D non-potential model for the interaction of small-scale solar magnetic fields. In the model, the basic evolution of the magnetic elements is governed by a supergranular flow profile. In addition, magnetic elements may evolve through the processes of emergence, cancellation, coalescence and fragmentation. Model parameters for the emergence of bipoles are based upon the results of observational studies. Using this model, several simulations are considered, where the range of flux with which bipoles may emerge is varied. In all cases the model quickly reaches a steady state where the rates of emergence and cancellation balance. Analysis of the resulting magnetic field shows that we reproduce observed quantities such as the flux distribution, mean field, cancellation rates, photospheric recycle time and a magnetic network. As expected, the simulation matches observations more closely when a larger, and consequently more realistic, range of emerging flux values is allowed (4×1016 - 1019 Mx). The model best reproduces the current observed properties of the magnetic carpet when we take the minimum absolute flux for emerging bipoles to be 4×1016 Mx. In future, this 2D model will be used as an evolving photospheric boundary condition for 3D non-potential modeling.
Resumo:
In this paper we show how to construct the Evans function for traveling wave solutions of integral neural field equations when the firing rate function is a Heaviside. This allows a discussion of wave stability and bifurcation as a function of system parameters, including the speed and strength of synaptic coupling and the speed of axonal signals. The theory is illustrated with the construction and stability analysis of front solutions to a scalar neural field model and a limiting case is shown to recover recent results of L. Zhang [On stability of traveling wave solutions in synaptically coupled neuronal networks, Differential and Integral Equations, 16, (2003), pp.513-536.]. Traveling fronts and pulses are considered in more general models possessing either a linear or piecewise constant recovery variable. We establish the stability of coexisting traveling fronts beyond a front bifurcation and consider parameter regimes that support two stable traveling fronts of different speed. Such fronts may be connected and depending on their relative speed the resulting region of activity can widen or contract. The conditions for the contracting case to lead to a pulse solution are established. The stability of pulses is obtained for a variety of examples, in each case confirming a previously conjectured stability result. Finally we show how this theory may be used to describe the dynamic instability of a standing pulse that arises in a model with slow recovery. Numerical simulations show that such an instability can lead to the shedding of a pair of traveling pulses.
Resumo:
In this paper we consider a neural field model comprised of two distinct populations of neurons, excitatory and inhibitory, for which both the velocities of action potential propagation and the time courses of synaptic processing are different. Using recently-developed techniques we construct the Evans function characterising the stability of both stationary and travelling wave solutions, under the assumption that the firing rate function is the Heaviside step. We find that these differences in timing for the two populations can cause instabilities of these solutions, leading to, for example, stationary breathers. We also analyse $quot;anti-pulses,$quot; a novel type of pattern for which all but a small interval of the domain (in moving coordinates) is active. These results extend previous work on neural fields with space dependent delays, and demonstrate the importance of considering the effects of the different time-courses of excitatory and inhibitory neural activity.
Resumo:
A detailed non-equilibrium state diagram of shape-anisotropic particle fluids is constructed. The effects of particle shape are explored using Naive Mode Coupling Theory (NMCT), and a single particle Non-linear Langevin Equation (NLE) theory. The dynamical behavior of non-ergodic fluids are discussed. We employ a rotationally frozen approach to NMCT in order to determine a transition to center of mass (translational) localization. Both ideal and kinetic glass transitions are found to be highly shape dependent, and uniformly increase with particle dimensionality. The glass transition volume fraction of quasi 1- and 2- dimensional particles fall monotonically with the number of sites (aspect ratio), while 3-dimensional particles display a non-monotonic dependence of glassy vitrification on the number of sites. Introducing interparticle attractions results in a far more complex state diagram. The ideal non-ergodic boundary shows a glass-fluid-gel re-entrance previously predicted for spherical particle fluids. The non-ergodic region of the state diagram presents qualitatively different dynamics in different regimes. They are qualified by the different behaviors of the NLE dynamic free energy. The caging dominated, repulsive glass regime is characterized by long localization lengths and barrier locations, dictated by repulsive hard core interactions, while the bonding dominated gel region has short localization lengths (commensurate with the attraction range), and barrier locations. There exists a small region of the state diagram which is qualified by both glassy and gel localization lengths in the dynamic free energy. A much larger (high volume fraction, and high attraction strength) region of phase space is characterized by short gel-like localization lengths, and long barrier locations. The region is called the attractive glass and represents a 2-step relaxation process whereby a particle first breaks attractive physical bonds, and then escapes its topological cage. The dynamic fragility of fluids are highly particle shape dependent. It increases with particle dimensionality and falls with aspect ratio for quasi 1- and 2- dimentional particles. An ultralocal limit analysis of the NLE theory predicts universalities in the behavior of relaxation times, and elastic moduli. The equlibrium phase diagram of chemically anisotropic Janus spheres and Janus rods are calculated employing a mean field Random Phase Approximation. The calculations for Janus rods are corroborated by the full liquid state Reference Interaction Site Model theory. The Janus particles consist of attractive and repulsive regions. Both rods and spheres display rich phase behavior. The phase diagrams of these systems display fluid, macrophase separated, attraction driven microphase separated, repulsion driven microphase separated and crystalline regimes. Macrophase separation is predicted in highly attractive low volume fraction systems. Attraction driven microphase separation is charaterized by long length scale divergences, where the ordering length scale determines the microphase ordered structures. The ordering length scale of repulsion driven microphase separation is determined by the repulsive range. At the high volume fractions, particles forgo the enthalpic considerations of attractions and repulsions to satisfy hard core constraints and maximize vibrational entropy. This results in site length scale ordering in rods, and the sphere length scale ordering in Janus spheres, i.e., crystallization. A change in the Janus balance of both rods and spheres results in quantitative changes in spinodal temperatures and the position of phase boundaries. However, a change in the block sequence of Janus rods causes qualitative changes in the type of microphase ordered state, and induces prominent features (such as the Lifshitz point) in the phase diagrams of these systems. A detailed study of the number of nearest neighbors in Janus rod systems reflect a deep connection between this local measure of structure, and the structure factor which represents the most global measure of order.
Resumo:
Many of the equations describing the dynamics of neural systems are written in terms of firing rate functions, which themselves are often taken to be threshold functions of synaptic activity. Dating back to work by Hill in 1936 it has been recognized that more realistic models of neural tissue can be obtained with the introduction of state-dependent dynamic thresholds. In this paper we treat a specific phenomenological model of threshold accommodation that mimics many of the properties originally described by Hill. Importantly we explore the consequences of this dynamic threshold at the tissue level, by modifying a standard neural field model of Wilson-Cowan type. As in the case without threshold accommodation classical Mexican-Hat connectivity is shown to allow for the existence of spatially localized states (bumps) in both one and two dimensions. Importantly an analysis of bump stability in one dimension, using recent Evans function techniques, shows that bumps may undergo instabilities leading to the emergence of both breathers and traveling waves. Moreover, a similar analysis for traveling pulses leads to the conditions necessary to observe a stable traveling breather. In the regime where a bump solution does not exist direct numerical simulations show the possibility of self-replicating bumps via a form of bump splitting. Simulations in two space dimensions show analogous localized and traveling solutions to those seen in one dimension. Indeed dynamical behavior in this neural model appears reminiscent of that seen in other dissipative systems that support localized structures, and in particular those of coupled cubic complex Ginzburg-Landau equations. Further numerical explorations illustrate that the traveling pulses in this model exhibit particle like properties, similar to those of dispersive solitons observed in some three component reaction-diffusion systems. A preliminary account of this work first appeared in S Coombes and M R Owen, Bumps, breathers, and waves in a neural network with spike frequency adaptation, Physical Review Letters 94 (2005), 148102(1-4).
Resumo:
In this paper we consider a class of scalar integral equations with a form of space-dependent delay. These non-local models arise naturally when modelling neural tissue with active axons and passive dendrites. Such systems are known to support a dynamic (oscillatory) Turing instability of the homogeneous steady state. In this paper we develop a weakly nonlinear analysis of the travelling and standing waves that form beyond the point of instability. The appropriate amplitude equations are found to be the coupled mean-field Ginzburg-Landau equations describing a Turing-Hopf bifurcation with modulation group velocity of O(1). Importantly we are able to obtain the coefficients of terms in the amplitude equations in terms of integral transforms of the spatio-temporal kernels defining the neural field equation of interest. Indeed our results cover not only models with axonal or dendritic delays but those which are described by a more general distribution of delayed spatio-temporal interactions. We illustrate the predictive power of this form of analysis with comparison against direct numerical simulations, paying particular attention to the competition between standing and travelling waves and the onset of Benjamin-Feir instabilities.
Resumo:
We develop a deterministic mathematical model to describe the way in which polymers bind to DNA by considering the dynamics of the gap distribution that forms when polymers bind to a DNA plasmid. In so doing, we generalise existing theory to account for overlaps and binding cooperativity whereby the polymer binding rate depends on the size of the overlap The proposed mean-field models are then solved using a combination of numerical and asymptotic methods. We find that overlaps lead to higher coverage and hence higher charge neutralisations, results which are more in line with recent experimental observations. Our work has applications to gene therapy where polymers are used to neutralise the negative charges of the DNA phosphate backbone, allowing condensation prior to delivery into the nucleus of an abnormal cell.
Resumo:
We review the use of neural field models for modelling the brain at the large scales necessary for interpreting EEG, fMRI, MEG and optical imaging data. Albeit a framework that is limited to coarse-grained or mean-field activity, neural field models provide a framework for unifying data from different imaging modalities. Starting with a description of neural mass models we build to spatially extended cortical models of layered two-dimensional sheets with long range axonal connections mediating synaptic interactions. Reformulations of the fundamental non-local mathematical model in terms of more familiar local differential (brain wave) equations are described. Techniques for the analysis of such models, including how to determine the onset of spatio-temporal pattern forming instabilities, are reviewed. Extensions of the basic formalism to treat refractoriness, adaptive feedback and inhomogeneous connectivity are described along with open challenges for the development of multi-scale models that can integrate macroscopic models at large spatial scales with models at the microscopic scale.
Resumo:
In this thesis we present a mathematical formulation of the interaction between microorganisms such as bacteria or amoebae and chemicals, often produced by the organisms themselves. This interaction is called chemotaxis and leads to cellular aggregation. We derive some models to describe chemotaxis. The first is the pioneristic Keller-Segel parabolic-parabolic model and it is derived by two different frameworks: a macroscopic perspective and a microscopic perspective, in which we start with a stochastic differential equation and we perform a mean-field approximation. This parabolic model may be generalized by the introduction of a degenerate diffusion parameter, which depends on the density itself via a power law. Then we derive a model for chemotaxis based on Cattaneo's law of heat propagation with finite speed, which is a hyperbolic model. The last model proposed here is a hydrodynamic model, which takes into account the inertia of the system by a friction force. In the limit of strong friction, the model reduces to the parabolic model, whereas in the limit of weak friction, we recover a hyperbolic model. Finally, we analyze the instability condition, which is the condition that leads to aggregation, and we describe the different kinds of aggregates we may obtain: the parabolic models lead to clusters or peaks whereas the hyperbolic models lead to the formation of network patterns or filaments. Moreover, we discuss the analogy between bacterial colonies and self gravitating systems by comparing the chemotactic collapse and the gravitational collapse (Jeans instability).
Resumo:
With the theme of fracture of finite-strain plates and shells based on a phase-field model of crack regularization, we introduce a new staggered algorithm for elastic and elasto-plastic materials. To account for correct fracture behavior in bending, two independent phase-fields are used, corresponding to the lower and upper faces of the shell. This is shown to provide a realistic behavior in bending-dominated problems, here illustrated in classical beam and plate problems. Finite strain behavior for both elastic and elasto-plastic constitutive laws is made compatible with the phase-field model by use of a consistent updated-Lagrangian algorithm. To guarantee sufficient resolution in the definition of the crack paths, a local remeshing algorithm based on the phase- field values at the lower and upper shell faces is introduced. In this local remeshing algorithm, two stages are used: edge-based element subdivision and node repositioning. Five representative numerical examples are shown, consisting of a bi-clamped beam, two versions of a square plate, the Keesecker pressurized cylinder problem, the Hexcan problem and the Muscat-Fenech and Atkins plate. All problems were successfully solved and the proposed solution was found to be robust and efficient.
Resumo:
The main purpose of this thesis is to go beyond two usual assumptions that accompany theoretical analysis in spin-glasses and inference: the i.i.d. (independently and identically distributed) hypothesis on the noise elements and the finite rank regime. The first one appears since the early birth of spin-glasses. The second one instead concerns the inference viewpoint. Disordered systems and Bayesian inference have a well-established relation, evidenced by their continuous cross-fertilization. The thesis makes use of techniques coming both from the rigorous mathematical machinery of spin-glasses, such as the interpolation scheme, and from Statistical Physics, such as the replica method. The first chapter contains an introduction to the Sherrington-Kirkpatrick and spiked Wigner models. The first is a mean field spin-glass where the couplings are i.i.d. Gaussian random variables. The second instead amounts to establish the information theoretical limits in the reconstruction of a fixed low rank matrix, the “spike”, blurred by additive Gaussian noise. In chapters 2 and 3 the i.i.d. hypothesis on the noise is broken by assuming a noise with inhomogeneous variance profile. In spin-glasses this leads to multi-species models. The inferential counterpart is called spatial coupling. All the previous models are usually studied in the Bayes-optimal setting, where everything is known about the generating process of the data. In chapter 4 instead we study the spiked Wigner model where the prior on the signal to reconstruct is ignored. In chapter 5 we analyze the statistical limits of a spiked Wigner model where the noise is no longer Gaussian, but drawn from a random matrix ensemble, which makes its elements dependent. The thesis ends with chapter 6, where the challenging problem of high-rank probabilistic matrix factorization is tackled. Here we introduce a new procedure called "decimation" and we show that it is theoretically to perform matrix factorization through it.
Resumo:
This work aims to develop a neurogeometric model of stereo vision, based on cortical architectures involved in the problem of 3D perception and neural mechanisms generated by retinal disparities. First, we provide a sub-Riemannian geometry for stereo vision, inspired by the work on the stereo problem by Zucker (2006), and using sub-Riemannian tools introduced by Citti-Sarti (2006) for monocular vision. We present a mathematical interpretation of the neural mechanisms underlying the behavior of binocular cells, that integrate monocular inputs. The natural compatibility between stereo geometry and neurophysiological models shows that these binocular cells are sensitive to position and orientation. Therefore, we model their action in the space R3xS2 equipped with a sub-Riemannian metric. Integral curves of the sub-Riemannian structure model neural connectivity and can be related to the 3D analog of the psychophysical association fields for the 3D process of regular contour formation. Then, we identify 3D perceptual units in the visual scene: they emerge as a consequence of the random cortico-cortical connection of binocular cells. Considering an opportune stochastic version of the integral curves, we generate a family of kernels. These kernels represent the probability of interaction between binocular cells, and they are implemented as facilitation patterns to define the evolution in time of neural population activity at a point. This activity is usually modeled through a mean field equation: steady stable solutions lead to consider the associated eigenvalue problem. We show that three-dimensional perceptual units naturally arise from the discrete version of the eigenvalue problem associated to the integro-differential equation of the population activity.
Resumo:
Networks of Kuramoto oscillators with a positive correlation between the oscillators frequencies and the degree of their corresponding vertices exhibit so-called explosive synchronization behavior, which is now under intensive investigation. Here we study and discuss explosive synchronization in a situation that has not yet been considered, namely when only a part, typically a small part, of the vertices is subjected to a degree-frequency correlation. Our results show that in order to have explosive synchronization, it suffices to have degree-frequency correlations only for the hubs, the vertices with the highest degrees. Moreover, we show that a partial degree-frequency correlation does not only promotes but also allows explosive synchronization to happen in networks for which a full degree-frequency correlation would not allow it. We perform a mean-field analysis and our conclusions were corroborated by exhaustive numerical experiments for synthetic networks and also for the undirected and unweighed version of a typical benchmark biological network, namely the neural network of the worm Caenorhabditis elegans. The latter is an explicit example where partial degree-frequency correlation leads to explosive synchronization with hysteresis, in contrast with the fully correlated case, for which no explosive synchronization is observed.
Resumo:
We analyze renormalizability properties of noncommutative (NC) theories with a bifermionic NC parameter. We introduce a new four-dimensional scalar field model which is renormalizable at all orders of the loop expansion. We show that this model has an infrared stable fixed point (at the one-loop level). We check that the NC QED (which is one-loop renormalizable with a usual NC parameter) remains renormalizable when the NC parameter is bifermionic, at least to the extent of one-loop diagrams with external photon legs. Our general conclusion is that bifermionic noncommutativity improves renormalizability properties of NC theories.
Sensitivity to noise and ergodicity of an assembly line of cellular automata that classifies density
Resumo:
We investigate the sensitivity of the composite cellular automaton of H. Fuks [Phys. Rev. E 55, R2081 (1997)] to noise and assess the density classification performance of the resulting probabilistic cellular automaton (PCA) numerically. We conclude that the composite PCA performs the density classification task reliably only up to very small levels of noise. In particular, it cannot outperform the noisy Gacs-Kurdyumov-Levin automaton, an imperfect classifier, for any level of noise. While the original composite CA is nonergodic, analyses of relaxation times indicate that its noisy version is an ergodic automaton, with the relaxation times decaying algebraically over an extended range of parameters with an exponent very close (possibly equal) to the mean-field value.