968 resultados para Mattos, Tomás de
Resumo:
Polybrominated diphenyl ethers (PBDEs) are compounds that are used as flame retardants. Human exposure is suggested to be via food, dust and air. An assessment of PBDE exposure via indoor environments using samples of air, dust and surface wipes from eight sites in South East Queensland, Australia was conducted. For indoor air, ΣPBDEs ranged from 0.5 -179 pg/m3 for homes and 15 - 487 pg/m3 for offices. In dust, ΣPBDEs ranged from 87 - 733 ng/g dust and 583 - 3070 ng/g dust in homes and offices, respectively. PBDEs were detected on 9 out of 10 surfaces sampled and ranged from non-detectable to 5985 pg/cm2. Overall, the congener profiles for air and dust were dominated by BDE-209. This study demonstrated that PBDEs are ubiquitous in the indoor environments of selected buildings in South East Queensland and suggest the need for detailed assessment of PBDE concentrations using more sites to further investigate the factors influencing PBDE exposure in Australia.
Resumo:
The Brain Research Institute (BRI) uses various types of indirect measurements, including EEG and fMRI, to understand and assess brain activity and function. As well as the recovery of generic information about brain function, research also focuses on the utilisation of such data and understanding to study the initiation, dynamics, spread and suppression of epileptic seizures. To assist with the future focussing of this aspect of their research, the BRI asked the MISG 2010 participants to examine how the available EEG and fMRI data and current knowledge about epilepsy should be analysed and interpreted to yield an enhanced understanding about brain activity occurring before, at commencement of, during, and after a seizure. Though the deliberations of the study group were wide ranging in terms of the related matters considered and discussed, considerable progress was made with the following three aspects. (1) The science behind brain activity investigations depends crucially on the quality of the analysis and interpretation of, as well as the recovery of information from, EEG and fMRI measurements. A number of specific methodologies were discussed and formalised, including independent component analysis, principal component analysis, profile monitoring and change point analysis (hidden Markov modelling, time series analysis, discontinuity identification). (2) Even though EEG measurements accurately and very sensitively record the onset of an epileptic event or seizure, they are, from the perspective of understanding the internal initiation and localisation, of limited utility. They only record neuronal activity in the cortical (surface layer) neurons of the brain, which is a direct reflection of the type of electrical activity they have been designed to record. Because fMRI records, through the monitoring of blood flow activity, the location of localised brain activity within the brain, the possibility of combining fMRI measurements with EEG, as a joint inversion activity, was discussed and examined in detail. (3) A major goal for the BRI is to improve understanding about ``when'' (at what time) an epileptic seizure actually commenced before it is identified on an eeg recording, ``where'' the source of this initiation is located in the brain, and ``what'' is the initiator. Because of the general agreement in the literature that, in one way or another, epileptic events and seizures represent abnormal synchronisations of localised and/or global brain activity the modelling of synchronisations was examined in some detail. References C. M. Michel, G. Thut, S. Morand, A. Khateb, A. J. Pegna, R. Grave de Peralta, S. Gonzalez, M. Seeck and T. Landis, Electric source imaging of human brain functions, Brain Res. Rev. , 36 (2--3), 2001, 108--118. doi:10.1016/S0165-0173(01)00086-8 S. Ogawa, R. S. Menon, S. G. Kim and K. Ugurbil, On the characteristics of functional magnetic resonance imaging of the brain, Annu. Rev. Bioph. Biom. , 27 , 1998, 447--474. doi:10.1146/annurev.biophys.27.1.447 C. D. Binnie and H. Stefan, Modern electroencephalography: its role in epilepsy management, Clin. Neurophysiol. , 110 (10), 1999, 1671--1697. doi:10.1016/S1388-2457(99)00125-X J. X. Tao, A. Ray, S. Hawes-Ebersole and J. S. Ebersole, Intracranial eeg substrates of scalp eeg interictal spikes, Epilepsia , 46 (5), 2005, 669--76. doi:10.1111/j.1528-1167.2005.11404.x S. Ogawa, D. W. Tank, R. Menon, J. M. Ellermann, S. G. Kim, H. Merkle and K. Ugurbil, Intrinsic signal changes accompanying sensory stimulation: Functional brain mapping with magnetic resonance imaging, P. Natl. Acad. Sci. USA , 89 (13), 1992, 5951--5955. doi:10.1073/pnas.89.13.5951 J. Engel Jr., Report of the ilae classification core group, Epilepsia , 47 (9), 2006, 1558--1568. doi:10.1111/j.1528-1167.2006.00215.x L. Lemieux, A. Salek-Haddadi, O. Josephs, P. Allen, N. Toms, C. Scott, K. Krakow, R. Turner and D. R. Fish, Event-related fmri with simultaneous and continuous eeg: description of the method and initial case r port, NeuroImage , 14 (3), 2001, 780--7. doi:10.1006/nimg.2001.0853 P. Federico, D. F. Abbott, R. S. Briellmann, A. S. Harvey and G. D. Jackson, Functional mri of the pre-ictal state, Brain , 128 (8), 2005, 1811-7. doi:10.1093/brain/awh533 C. S. Hawco, A. P. Bagshaw, Y. Lu, F. Dubeau and J. Gotman, bold changes occur prior to epileptic spikes seen on scalp eeg, NeuroImage , 35 (4), 2007, 1450--1458. doi:10.1016/j.neuroimage.2006.12.042 F. Moeller, H. R. Siebner, S. Wolff, H. Muhle, R. Boor, O. Granert, O. Jansen, U. Stephani and M. Siniatchkin, Changes in activity of striato-thalamo-cortical network precede generalized spike wave discharges, NeuroImage , 39 (4), 2008, 1839--1849. doi:10.1016/j.neuroimage.2007.10.058 V. Osharina, E. Ponchel, A. Aarabi, R. Grebe and F. Wallois, Local haemodynamic changes preceding interictal spikes: A simultaneous electrocorticography (ecog) and near-infrared spectroscopy (nirs) analysis in rats, NeuroImage , 50 (2), 2010, 600--607. doi:10.1016/j.neuroimage.2010.01.009 R. S. Fisher, W. Boas, W. Blume, C. Elger, P. Genton, P. Lee and J. Engel, Epileptic seizures and epilepsy: Definitions proposed by the international league against epilepsy (ilae) and the international bureau for epilepsy (ibe), Epilepsia , 46 (4), 2005, 470--472. doi:10.1111/j.0013-9580.2005.66104.x H. Berger, Electroencephalogram in humans, Arch. Psychiat. Nerven. , 87 , 1929, 527--570. C. M. Michel, M. M. Murray, G. Lantz, S. Gonzalez, L. Spinelli and R. G. de Peralta, eeg source imaging, Clin. Neurophysiol. , 115 (10), 2004, 2195--2222. doi:10.1016/j.clinph.2004.06.001 P. L. Nunez and R. B. Silberstein, On the relationship of synaptic activity to macroscopic measurements: Does co-registration of eeg with fmri make sense?, Brain Topogr. , 13 (2), 2000, 79--96. doi:10.1023/A:1026683200895 S. Ogawa, T. M. Lee, A. R. Kay and D. W. Tank, Brain magnetic resonance imaging with contrast dependent on blood oxygenation, P. Natl. Acad. Sci. USA , 87 (24), 1990, 9868--9872. doi:10.1073/pnas.87.24.9868 J. S. Gati, R. S. Menon, K. Ugurbil and B. K. Rutt, Experimental determination of the bold field strength dependence in vessels and tissue, Magn. Reson. Med. , 38 (2), 1997, 296--302. doi:10.1002/mrm.1910380220 P. A. Bandettini, E. C. Wong, R. S. Hinks, R. S. Tikofsky and J. S. Hyde, Time course EPI of human brain function during task activation, Magn. Reson. Med. , 25 (2), 1992, 390--397. K. K. Kwong, J. W. Belliveau, D. A. Chesler, I. E. Goldberg, R. M. Weisskoff, B. P. Poncelet, D. N. Kennedy, B. E. Hoppelm, M. S. Cohen and R. Turner, Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation, P. Natl. Acad. Sci. USA , 89 (12), 1992, 5675--5679. doi:10.1073/pnas.89.12.5675 J. Frahm, K. D. Merboldt and W. Hnicke, Functional mri of human brain activation at high spatial resolution, Magn. Reson. Med. , 29 (1), 1993, 139--144. P. A. Bandettini, A. Jesmanowicz, E. C. Wong and J. S. Hyde, Processing strategies for time-course data sets in functional MRI of the human brain, Magn. Reson. Med. , 30 (2), 1993, 161--173. K. J. Friston, P. Jezzard and R. Turner, Analysis of functional MRI time-series, Hum. Brain Mapp. , 1 (2), 1994, 153--171. B. Biswal, F. Z. Yetkin, V. M. Haughton and J. S. Hyde, Functional connectivity in the motor cortex of resting human brain using echo-planar mri, Mag. Reson. Med. , 34 (4), 1995, 537--541. doi:10.1002/mrm.1910340409 K. J. Friston, J. Ashburner, C. D. Frith, J. Poline, J. D. Heather and R. S. J. Frackowiak, Spatial registration and normalization of images, Hum. Brain Mapp. , 3 (3), 1995, 165--189. K. J. Friston, S. Williams, R. Howard, R. S. Frackowiak and R. Turner, Movement-related effects in fmri time-series, Magn. Reson. Med. , 35 (3), 1996, 346--355. G. H. Glover, T. Q. Li and D. Ress, Image-based method for retrospective correction of physiological motion effects in fmri: Retroicor, Magn. Reson. Med. , 44 (1), 2000, 162--167. doi:10.1002/1522-2594(200007)44:13.0.CO;2-E K. J. Friston, O. Josephs, G. Rees and R. Turner, Nonlinear event-related responses in fmri, Magn. Reson. Med. , 39 (1), 1998, 41--52. doi:10.1002/mrm.1910390109 K. Ugurbil, L. Toth and D. Kim, How accurate is magnetic resonance imaging of brain function?, Trends Neurosci. , 26 (2), 2003, 108--114. doi:10.1016/S0166-2236(02)00039-5 D. S. Kim, I. Ronen, C. Olman, S. G. Kim, K. Ugurbil and L. J. Toth, Spatial relationship between neuronal activity and bold functional mri, NeuroImage , 21 (3), 2004, 876--885. doi:10.1016/j.neuroimage.2003.10.018 A. Connelly, G. D. Jackson, R. S. Frackowiak, J. W. Belliveau, F. Vargha-Khadem and D. G. Gadian, Functional mapping of activated human primary cortex with a clinical mr imaging system, Radiology , 188 (1), 1993, 125--130. L. Allison, Hidden Markov Models, Technical Report , School of Computer and Software Engineering, Monash University, 2000. R. J. Elliott, L. Aggoun and J.B. Moore, Hidden Markov Models: Estimation and Control, Appl. Math.-Czech. , 2004. B. Bhavnagri, Discontinuities of plane functions projected from a surface with methods for finding these , Technical Report, 2009. B. Bhavnagri, Computer Vision using Shape Spaces , Technical Report,1996, University of Adelaide. B. Bhavnagri, A method for representing shape based on an equivalence relation on polygons, Pattern Recogn. , 27 (2), 1994, 247--260. doi:10.1016/0031-3203(94)90057-4 D. F. Abbott, A. B. Waites, A. S. Harvey and G. D. Jackson, Exploring epileptic seizure onset with fmri, NeuroImage , 36(S1) (344TH-PM), 2007. M. C. Mackey and L. Glass, Oscillation and chaos in physiological control systems, Science , 197 , 1977, 287--289. S. H. Strogatz, SYNC - The Emerging Science of Spontaneous Order , Theia, New York, 2003. J. W. Kim, J. A. Roberts and P. A. Robinson, Dynamics of epileptic seizures: Evolution, spreading, and suppression, J. Theor. Biol. , 257 (4), 2009, 527--532. doi:10.1016/j.jtbi.2008.12.009 Y. Kuramoto, T. Aoyagi, I. Nishikawa, T. Chawanya T and K. Okuda, Neural network model carrying phase information with application to collective dynamics, J. Theor. Phys. , 87 (5), 1992, 1119--1126. V. B. Mountcastle, The columnar organization of the neocortex, Brain , 120 (4), 1997, 701. doi:10.1093/brain/120.4.701 F. L. Silva, W. Blanes, S. N. Kalitzin, J. Parra, P. Suffczynski and D. N. Velis, Epilepsies as dynamical diseases of brain systems: Basic models of the transition between normal and epileptic activity, Epilepsia , 44 (12), 2003, 72--83. F. H. Lopes da Silva, W. Blanes, S. N. Kalitzin, J. Parra, P. Suffczynski and D. N. Velis, Dynamical diseases of brain systems: different routes to epileptic seizures, ieee T. Bio-Med. Eng. , 50 (5), 2003, 540. L.D. Iasemidis, Epileptic seizure prediction and control, ieee T. Bio-Med. Eng. , 50 (5), 2003, 549--558. L. D. Iasemidis, D. S. Shiau, W. Chaovalitwongse, J. C. Sackellares, P. M. Pardalos, J. C. Principe, P. R. Carney, A. Prasad, B. Veeramani, and K. Tsakalis, Adaptive epileptic seizure prediction system, ieee T. Bio-Med. Eng. , 50 (5), 2003, 616--627. K. Lehnertz, F. Mormann, T. Kreuz, R.G. Andrzejak, C. Rieke, P. David and C. E. Elger, Seizure prediction by nonlinear eeg analysis, ieee Eng. Med. Biol. , 22 (1), 2003, 57--63. doi:10.1109/MEMB.2003.1191451 K. Lehnertz, R. G. Andrzejak, J. Arnhold, T. Kreuz, F. Mormann, C. Rieke, G. Widman and C. E. Elger, Nonlinear eeg analysis in epilepsy: Its possible use for interictal focus localization, seizure anticipation, and prevention, J. Clin. Neurophysiol. , 18 (3), 2001, 209. B. Litt and K. Lehnertz, Seizure prediction and the preseizure period, Curr. Opin. Neurol. , 15 (2), 2002, 173. doi:10.1097/00019052-200204000-00008 B. Litt and J. Echauz, Prediction of epileptic seizures, Lancet Neurol. , 1 (1), 2002, 22--30. doi:10.1016/S1474-4422(02)00003-0 M. M{a}kiranta, J. Ruohonen, K Suominen, J. Niinim{a}ki, E. Sonkaj{a}rvi, V. Kiviniemi, T. Sepp{a}nen, S. Alahuhta, V. J{a}ntti and O. Tervonen, {bold} signal increase preceeds eeg spike activity--a dynamic penicillin induced focal epilepsy in deep anesthesia, NeuroImage , 27 (4), 2005, 715--724. doi:10.1016/j.neuroimage.2005.05.025 K. Lehnertz, F. Mormann, H. Osterhage, A. M{u}ller, J. Prusseit, A. Chernihovskyi, M. Staniek, D. Krug, S. Bialonski and C. E. Elger, State-of-the-art of seizure prediction, J. Clin. Neurophysiol. , 24 (2), 2007, 147. doi:10.1097/WNP.0b013e3180336f16 F. Mormann, T. Kreuz, C. Rieke, R. G. Andrzejak, A. Kraskov, P. David, C. E. Elger and K. Lehnertz, On the predictability of epileptic seizures, Clin. Neurophysiol. , 116 (3), 2005, 569--587. doi:10.1016/j.clinph.2004.08.025 F. Mormann, R. G. Andrzejak, C. E. Elger and K. Lehnertz, Seizure prediction: the long and winding road, Brain , 130 (2), 2007, 314--333. doi:10.1093/brain/awl241 Z. Rogowski, I. Gath and E. Bental, On the prediction of epileptic seizures, Biol. Cybern. , 42 (1), 1981, 9--15. Y. Salant, I. Gath, O. Henriksen, Prediction of epileptic seizures from two-channel eeg, Med. Biol. Eng. Comput. , 36 (5), 1998, 549--556. doi:10.1007/BF02524422 J. Gotman and D.J. Koffler, Interictal spiking increases after seizures but does not after decrease in medication, Evoked Potential , 72 (1), 1989, 7--15. J. Gotman and M. G. Marciani, Electroencephalographic spiking activity, drug levels, and seizure occurence in epileptic patients, Ann. Neurol. , 17 (6), 1985, 59--603. A. Katz, D. A. Marks, G. McCarthy and S. S. Spencer, Does interictal spiking change prior to seizures?, Electroen. Clin. Neuro. , 79 (2), 1991, 153--156. A. Granada, R. M. Hennig, B. Ronacher, A. Kramer and H. Herzel, Phase Response Curves: Elucidating the dynamics of couples oscillators, Method Enzymol. , 454 (A), 2009, 1--27. doi:10.1016/S0076-6879(08)03801-9 doi:10.1016/S0076-6879(08)03801-9 H. Kantz and T. Schreiber, Nonlinear time series analysis , 2004, Cambridge Univ Press. M. V. L. Bennett and R. S Zukin, Electrical coupling and neuronal synchronization in the mammalian brain, Neuron , 41 (4), 2004, 495 --511. doi:10.1016/S0896-6273(04)00043-1 L.D. Iasemidis, J. Chris Sackellares, H. P. Zaveri and W. J. Williams, Phase space topography and the Lyapunov exponent of electrocorticograms in partial seizures, Brain Topogr. , 2 (3), 1990, 187--201. doi:10.1007/BF01140588 M. Le Van Quyen, J. Martinerie, V. Navarro, M. Baulac and F. J. Varela, Characterizing neurodynamic changes before seizures, J. Clin. Neurophysiol. , 18 (3), 2001, 191. J. Martinerie, C. Adam, M. Le Van Quyen, M. Baulac, S. Clemenceau, B. Renault and F. J. Varela, Epileptic seizures can be anticipated by non-linear analysis, Nat. Med. , 4 (10), 1998, 1173--1176. doi:10.1038/2667 A. Pikovsky, M. Rosenblum, J. Kurths and R. C. Hilborn, Synchronization: A universal concept in nonlinear science, Amer. J. Phys. , 70 , 2002, 655. H. R. Wilson and J. D. Cowan, Excitatory and inhibitory interactions in localized populations of model neurons, Biophys. J. , 12 (1), 1972, 1--24. D. Cumin and C. P. Unsworth, Generalising the Kuramoto model for the study of neuronal synchronisation in the brain, Physica D , 226 (2), 2007, 181--196. doi:10.1016/j.physd.2006.12.004 F. K. Skinner, H. Bazzazi and S. A. Campbell, Two-cell to N-cell heterogeneous, inhibitory networks: Precise linking of multistable and coherent properties, J. Comput. Neurosci. , 18 (3), 2005, 343--352. doi:10.1007/s10827-005-0331-1 W. W. Lytton, Computer modelling of epilepsy, Nat. Rev. Neurosci. , 9 (8), 2008, 626--637. doi:10.1038/nrn2416 R. D. Traub, A. Bibbig, F. E. N. LeBeau, E. H. Buhl and M. A. Whittington, Cellular mechanisms of neuronal population oscillations in the hippocampus in vitro, Ann. Rev. , 2004. R. D. Traub, A. Draguhn, M. A. Whittington, T. Baldeweg, A. Bibbig, E. H. Buhl and D. Schmitz, Axonal gap junc ions between principal neurons: A novel source of network oscillations, and perhaps epileptogenesis., Rev. Neuroscience , 13 (1), 2002, 1. doi:10.1146/annurev.neuro.27.070203.144303 M. Scheffer, J. Bascompte, W. A. Brock, V. Brovkin, S. R. Carpenter, V. Dakos, H. Held, E. H. van Nes, M. Rietkerk and G. Sugihara, Early-warning signals for critical transitions, Nature , 461 (7260), 2009, 53--59. doi:10.1038/nature08227 K. Murphy, A Brief Introduction to Graphical Models and Bayesian Networks , 2008, http://www.cs.ubc.ca/murphyk/Bayes/bnintro.html . R. C. Bradley, An elementary
Resumo:
Perflurooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) have been used for a variety of applications including fluoropolymer processing, fire-fighting foams and surface treatments since the 1950s. Both PFOS and PFOA are polyfluoroalkyl chemicals (PFCs), man-made compounds that are persistent in the environment and humans; some PFCs have shown adverse effects in laboratory animals. Here we describe the application of a simple one compartment pharmacokinetic model to estimate total intakes of PFOA and PFOS for the general population of urban areas on the east coast of Australia. Key parameters for this model include the elimination rate constants and the volume of distribution within the body. A volume of distribution was calibrated for PFOA to a value of 170ml/kgbw using data from two communities in the United States where the residents' serum concentrations could be assumed to result primarily from a known and characterized source, drinking water contaminated with PFOA by a single fluoropolymer manufacturing facility. For PFOS, a value of 230ml/kgbw was used, based on adjustment of the PFOA value. Applying measured Australian serum data to the model gave mean+/-standard deviation intake estimates of PFOA of 1.6+/-0.3ng/kgbw/day for males and females >12years of age combined based on samples collected in 2002-2003 and 1.3+/-0.2ng/kg bw/day based on samples collected in 2006-2007. Mean intakes of PFOS were 2.7+/-0.5ng/kgbw/day for males and females >12years of age combined based on samples collected in 2002-2003, and 2.4+/-0.5ng/kgbw/day for the 2006-2007 samples. ANOVA analysis was run for PFOA intake and demonstrated significant differences by age group (p=0.03), sex (p=0.001) and date of collection (p<0.001). Estimated intake rates were highest in those aged >60years, higher in males compared to females, and higher in 2002-2003 compared to 2006-2007. The same results were seen for PFOS intake with significant differences by age group (p<0.001), sex (p=0.001) and date of collection (p=0.016).
Resumo:
Background Brominated flame retardants (BFRs), are chemicals widely used in consumer products including electronics, vehicles, plastics and textiles to reduce flammability. Experimental animal studies have confirmed that these compounds may interfere with thyroid hormone homeostasis and neurodevelopment but to date health effects in humans have not been systematically examined. Objectives To conduct a systematic review of studies on the health impacts of exposure to BFRs in humans, with a particular focus on children. Methods A systematic review was conducted using the Medline and EMBASE electronic databases up to 1 February 2012. Published cohort, cross-sectional, and case-control studies exploring the relationship between BFR exposure and various health outcomes were included. Results In total, 36 epidemiological studies meeting the pre-determined inclusion criteria were included. Plausible outcomes associated with BFR exposure include diabetes, neurobehavioral and developmental disorders, cancer, reproductive health effects and alteration in thyroid function. Evidence for a causal relationship between exposure to BFRs and health outcomes was evaluated within the Bradford Hill framework. Conclusion Although there is suggestive evidence that exposure to BFRs is harmful to health, further epidemiological investigations particularly among children, and long-term monitoring and surveillance of chemical impacts on humans are required to confirm these relationships.
Resumo:
In this paper, we have compiled and reviewed the most recent literature, published from January2010 to December 2012, relating to the human exposure, environmental distribution, behaviour, fate and concentration time trends of polybrominated diphenyl ether (PBDE) and hexabromocyclododecane (HBCD) flame retardants, in order to establish their current trends and priorities for future study. Due to the large volume of literature included, we have provided full detail of the reviewed studies as Electronic Supplementary Information and here summarise the most relevant findings. Decreasing time trends for penta-mix PBDE congeners were seen for soils in northern Europe, sewage sludge in Sweden and the USA, carp from a US river, trout from three of the Great Lakes and in Arctic and UK marine mammals and many birds, but increasing time trends continue in Arctic polar bears and some birds at high trophic levels in northern Europe. This is a result of the time delay inherent in long-range atmospheric transport processes. In general, concentrations of BDE209 (the major component of the deca-mix PBDE product) are continuing to increase. Of major concern is the possible/likely debromination of the large reservoir of BDE209 in soils and sediments worldwide, to yield lower brominated congeners which are both more mobile and more toxic, and we have compiled the most recent evidence for the occurrence of this degradation process. Numerous studies reported here reinforce the importance o f this future concern. Time trends for HBCDs are mixed, with both increases and decreases evident in different matrices and locations and, notably, with increasing occurrence in birds of prey.
Resumo:
Background Australian national biomonitoring for persistent organic pollutants (POPs) relies upon age-specific pooled serum samples to characterize central tendencies of concentrations but does not provide estimates of upper bound concentrations. This analysis compares population variation from biomonitoring datasets from the US, Canada, Germany, Spain, and Belgium to identify and test patterns potentially useful for estimating population upper bound reference values for the Australian population. Methods Arithmetic means and the ratio of the 95th percentile to the arithmetic mean (P95:mean) were assessed by survey for defined age subgroups for three polychlorinated biphenyls (PCBs 138, 153, and 180), hexachlorobenzene (HCB), p,p-dichlorodiphenyldichloroethylene (DDE), 2,2′,4,4′ tetrabrominated diphenylether (PBDE 47), perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS). Results Arithmetic mean concentrations of each analyte varied widely across surveys and age groups. However, P95:mean ratios differed to a limited extent, with no systematic variation across ages. The average P95:mean ratios were 2.2 for the three PCBs and HCB; 3.0 for DDE; 2.0 and 2.3 for PFOA and PFOS, respectively. The P95:mean ratio for PBDE 47 was more variable among age groups, ranging from 2.7 to 4.8. The average P95:mean ratios accurately estimated age group-specific P95s in the Flemish Environmental Health Survey II and were used to estimate the P95s for the Australian population by age group from the pooled biomonitoring data. Conclusions Similar population variation patterns for POPs were observed across multiple surveys, even when absolute concentrations differed widely. These patterns can be used to estimate population upper bounds when only pooled sampling data are available.
Resumo:
Bisphenol A (BPA) is used extensively in food-contact materials and has been detected routinely in populations worldwide, and this exposure has been linked to a range of negative health outcomes in humans. There is some evidence of an association between BPA and different socioeconomic variables which may be the result of different dietary patterns. The aim of this study was to conduct a preliminary investigation of the association between BPA and socioeconomic status in Australian children using pooled urine specimens and an area level socioeconomic index. Surplus pathology urine specimens collected from children aged 0-15 years in Queensland, Australia as samples of convenience (n = 469) were pooled by age, sex and area level socioeconomic index (n = 67 pools), and analysed for total BPA using online solid phase extraction LC-MS/MS. Concentration ranged from 1.08-27.4 ng/ml with geometric mean 2.57 ng/ml, and geometric mean exposure was estimated as 70.3 ng/kg d-1. Neither BPA concentration nor excretion was associated with age or sex, and the authors found no evidence of an association with socioeconomic status. These results suggest that BPA exposure is not associated with socioeconomic status in the Australian population due to relatively homogenous exposures in Australia, or that the socioeconomic gradient is relatively slight in Australia compared with other OECD countries.
Resumo:
Some perfluoroalkyl and polyfluoroalkyl substances (PFASs) have become widespread pollutants detected in human and wildlife samples worldwide. The main objective of this study was to assess temporal trends of PFAS concentrations in human blood in Australia over the last decade (2002–2011), taking into consideration age and sex trends. Pooled human sera from 2002/03 (n=26); 2008/09 (n=24) and 2010/11 (n=24) from South East Queensland, Australia were obtained from de-identified surplus pathology samples and compared with samples collected previously from 2006/07 (n=84). A total of 9775 samples in 158 pools were available for assessment of PFASs. Stratification criteria included sex and age: <16 years (2002/03 only); 0–4 (2006/07, 2008/09, 2010/11); 5–15 (2006/07, 2008/09, 2010/11); 16–30; 31–45; 46–60; and >60 years (all collection periods). Sera were analyzed using on-line solid-phase extraction coupled to high-performance liquid chromatography-isotope dilution-tandem mass spectrometry. Perfluorooctane sulfonate (PFOS) was detected in the highest concentrations ranging from 5.3–19.2 ng/ml (2008/09) to 4.4–17.4 ng/ml (2010/11). Perfluorooctanoate (PFOA) was detected in the next highest concentration ranging from 2.8–7.3 ng/ml (2008/09) to 3.1–6.5 ng/ml (2010/11). All other measured PFASs were detected at concentrations <1 ng/ml with the exception of perfluorohexane sulfonate which ranged from 1.2–5.7 ng/ml (08/09) and 1.4–5.4 ng/ml (10/11). The mean concentrations of both PFOS and PFOA in the 2010/11 period compared to 2002/03 were lower for all adult age groups by 56%. For 5-15 year olds, the decrease was 66% (PFOS) and 63% (PFOA) from 2002/03 to 2010/11. For 0-4 year olds the decrease from 2006/07 (when data were first available for this age group) was 50% (PFOS) and 22% (PFOA). This study provides strong evidence for decreasing serum PFOS and PFOA concentrations in an Australian population from 2002 through 2011. Age trends were variable and concentrations were higher in males than females. Global use has been in decline since around 2002 and hence primary exposure levels are expected to be decreasing. Further biomonitoring will allow assessment of PFAS exposures to confirm trends in exposure as primary and eventually secondary sources are depleted.
Resumo:
Severe dioxin contamination at Bien Hoa and Da Nang airbases, Vietnam is of international concern. Public Health risk reduction programs were implemented in Bien Hoa in 2007-2009 and in Da Nang in 2009-2011. In 2009 and 2011 we reported the encouraging results of these interventions in improving the knowledge, attitude and practices (KAP) of local residents in reducing the dioxin exposure risk through foods. In 2013 we revisited these dioxin hot spots, aimed to evaluate whether the results of the intervention were maintained and to identify factors affecting the sustainability of the programs. To assess this, 16 in-depth interviews, six focus group discussions, and pre and post intervention KAP surveys were undertaken. 800 respondents from six intervention wards and 200 respondents from Buu Long Ward (the control site) were randomly selected to participate in the surveys. The results showed that as of 2013, the programs were rated as "moderately sustained" with a score of 3.3 out of 5.0 (cut off points 2.5 to <3.5) for Bien Hoa, and "well sustained" with a score of 3.8 out of 5.0 (cut off points 3.5 to <4.5) for Da Nang. Most formal intervention program activities had ceased and dioxin risk communication activities were no longer integrated into local routine health education programs. However, the main outcomes were maintained and were better than that in the control ward. Migration, lack of official guidance from City People's Committees and local authorities as well as the politically sensitive nature of dioxin issues were the main challenges for the sustainability of the programs.
Resumo:
Quantifying the competing rates of intake and elimination of persistent organic pollutants (POPs) in the human body is necessary to understand the levels and trends of POPs at a population level. In this paper we reconstruct the historical intake and elimination of ten polychlorinated biphenyls (PCBs) and five organochlorine pesticides (OCPs) from Australian biomonitoring data by fitting a population-level pharmacokinetic (PK) model. Our analysis exploits two sets of cross-sectional biomonitoring data for PCBs and OCPs in pooled blood serum samples from the Australian population that were collected in 2003 and 2009. The modeled adult reference intakes in 1975 for PCB congeners ranged from 0.89 to 24.5 ng/kg bw/day, lower than the daily intakes of OCPs ranging from 73 to 970 ng/kg bw/day. Modeled intake rates are declining with half-times from 1.1 to 1.3 years for PCB congeners and 0.83 to 0.97 years for OCPs. The shortest modeled intrinsic human elimination half-life among the compounds studied here is 6.4 years for hexachlorobenzene, and the longest is 30 years for PCB-74. Our results indicate that it is feasible to reconstruct intakes and to estimate intrinsic human elimination half-lives using the population-level PK model and biomonitoring data only. Our modeled intrinsic human elimination half-lives are in good agreement with values from a similar study carried out for the population of the United Kingdom, and are generally longer than reported values from other industrialized countries in the Northern Hemisphere.
Resumo:
Human half-lives of PentaBDE congeners have been estimated from the decline in serum concentrations measured over a 6-12 month period for a population of exchange students moving from North America to Australia. Australian serum PBDE concentrations are typically between 5 -10 times lower than in North America and we can therefore hypothesize that if the biological half-life is sufficiently short we would observe a decline in serum concentration with length of residence in Australia. Thirty students were recruited over a period of 3 years from whom serum were archived every 2 months during their stay in Australia. Australian residents (n=22) were also sampled longitudinally to estimate general population background levels. All serum samples were analyzed by gas chromatography high resolution mass spectrometry. Key findings confirmed that BDE-47 concentrations in the Australians (median 2.3;
Resumo:
Polybrominated diphenyl ethers (PBDEs) are considered to be a cost effective and efficient way to reduce flammability therefore reducing harm caused by fires. PBDEs are incorporated into a variety of manufactured products and are found worldwide in biological and environmental samples (e.g. Hites et al. 2004). Unlike other persistent organic pollutants there is limited data on PBDE concentrations by age and/or other population specific factors. Some studies have shown no variation in adult serum PBDE concentrations with age (e.g. Mazdai et al., 2003, Meironyte Guvenius et al., 2003) while Petreas et al. (2003) and Schecter et al. (2005) found results to be suggestive of an age trend in adult data but no statistically significant correlation was found. In addition to the data on adult concentrations there is limited data which investigates the levels of PBDEs in infants and young children. Fangström et al. (2005) showed that in seven year olds there was no difference in PBDE concentration when compared to adult concentrations. While Thomsen et al. (2002, 2005) found the concentration of PBDEs in pooled samples of blood serum from a 0-4 years age group to be higher than other age groups (4 to > 60 years). In addition, a family of four was studied in the U.S. and the concentrations were found to be greatest in the 18-month-old infant followed by the 5 year old child, then the mother and father (Fischer et al., 2006). The objectives of this study were to assess age, gender and regional trends of PBDE concentrations in a representative sample of the Australian population.
Resumo:
Polybrominated diphenylethers (PBDEs) are widely used as flame retardants in polymer materials, textiles, electronic boards and various other materials. Technical PBDE preparations are produced as mixtures of mainly penta-, octa- or decabrombiphenyl ethers1,2. PBDEs are structurally similar to other environmental pollutants like dioxins and PCBs, they are lipophilic and persistent compounds and are widespread in the environment. To date, no information is available on the levels of PBDEs in human serum in Australia. In 2003, more than 9000 blood samples were collected in Australia as part of the National Dioxins Program. The aim of this study was to evaluate PBDE concentrations in these samples, focusing on one age group.
Resumo:
Polybrominated diphenyl ethers (PBDEs), a common class of brominated flame retardants, are a ubiquitous part of our built environment, and for many years have contributed to improved public safety by reducing the flammability of everyday goods. Recently, PBDEs have come under increased international attention because of their potential to impact upon the environment and human health. Some PBDE compounds have been nominated for possible inclusion on the Stockholm Convention on Persistent Organic Pollutants, to which Australia is a Party. Work under the Stockholm Convention has demonstrated the capacity of some PBDEs to persist and accumulate in the environment and to be carried long distances. Much is unknown about the impact of PBDEs on living organisms, however recent studies show that some PBDEs can inhibit growth in colonies of plankton and algae and depress the reproduction of zooplankton. Laboratory mice and rats have also shown liver disturbances and damage to developing nervous systems as a result of exposure to PBDEs. In 2004, the Australian Government Department of the Environment and Water Resources began three studies to examine levels of PBDEs in aquatic sediments, indoor environments and human blood, as knowledge about PBDEs in Australia was very limited. The aim of these studies was to improve this knowledge base so that governments were in a better position to consider appropriate management actions. Due to the high costs for laboratory analysis of PBDEs, the number of samples collected for each study was limited and so caution is required when interpreting the findings. Nevertheless, these studies will provide governments with an indication of how prevalent PBDEs are in the Australian population and the environment and will also contribute to international knowledge about these chemicals. The Department of the Environment and Water Resources will be working closely with othergovernment agencies, industry and the community to investigate any further action that may be required to address PBDEs in Australia.