984 resultados para Mathematical statistics.
Resumo:
Computer resource allocation represents a significant challenge particularly for multiprocessor systems, which consist of shared computing resources to be allocated among co-runner processes and threads. While an efficient resource allocation would result in a highly efficient and stable overall multiprocessor system and individual thread performance, ineffective poor resource allocation causes significant performance bottlenecks even for the system with high computing resources. This thesis proposes a cache aware adaptive closed loop scheduling framework as an efficient resource allocation strategy for the highly dynamic resource management problem, which requires instant estimation of highly uncertain and unpredictable resource patterns. Many different approaches to this highly dynamic resource allocation problem have been developed but neither the dynamic nature nor the time-varying and uncertain characteristics of the resource allocation problem is well considered. These approaches facilitate either static and dynamic optimization methods or advanced scheduling algorithms such as the Proportional Fair (PFair) scheduling algorithm. Some of these approaches, which consider the dynamic nature of multiprocessor systems, apply only a basic closed loop system; hence, they fail to take the time-varying and uncertainty of the system into account. Therefore, further research into the multiprocessor resource allocation is required. Our closed loop cache aware adaptive scheduling framework takes the resource availability and the resource usage patterns into account by measuring time-varying factors such as cache miss counts, stalls and instruction counts. More specifically, the cache usage pattern of the thread is identified using QR recursive least square algorithm (RLS) and cache miss count time series statistics. For the identified cache resource dynamics, our closed loop cache aware adaptive scheduling framework enforces instruction fairness for the threads. Fairness in the context of our research project is defined as a resource allocation equity, which reduces corunner thread dependence in a shared resource environment. In this way, instruction count degradation due to shared cache resource conflicts is overcome. In this respect, our closed loop cache aware adaptive scheduling framework contributes to the research field in two major and three minor aspects. The two major contributions lead to the cache aware scheduling system. The first major contribution is the development of the execution fairness algorithm, which degrades the co-runner cache impact on the thread performance. The second contribution is the development of relevant mathematical models, such as thread execution pattern and cache access pattern models, which in fact formulate the execution fairness algorithm in terms of mathematical quantities. Following the development of the cache aware scheduling system, our adaptive self-tuning control framework is constructed to add an adaptive closed loop aspect to the cache aware scheduling system. This control framework in fact consists of two main components: the parameter estimator, and the controller design module. The first minor contribution is the development of the parameter estimators; the QR Recursive Least Square(RLS) algorithm is applied into our closed loop cache aware adaptive scheduling framework to estimate highly uncertain and time-varying cache resource patterns of threads. The second minor contribution is the designing of a controller design module; the algebraic controller design algorithm, Pole Placement, is utilized to design the relevant controller, which is able to provide desired timevarying control action. The adaptive self-tuning control framework and cache aware scheduling system in fact constitute our final framework, closed loop cache aware adaptive scheduling framework. The third minor contribution is to validate this cache aware adaptive closed loop scheduling framework efficiency in overwhelming the co-runner cache dependency. The timeseries statistical counters are developed for M-Sim Multi-Core Simulator; and the theoretical findings and mathematical formulations are applied as MATLAB m-file software codes. In this way, the overall framework is tested and experiment outcomes are analyzed. According to our experiment outcomes, it is concluded that our closed loop cache aware adaptive scheduling framework successfully drives co-runner cache dependent thread instruction count to co-runner independent instruction count with an error margin up to 25% in case cache is highly utilized. In addition, thread cache access pattern is also estimated with 75% accuracy.
Resumo:
Hypertrophic scars arise when there is an overproduction of collagen during wound healing. These are often associated with poor regulation of the rate of programmed cell death(apoptosis) of the cells synthesizing the collagen or by an exuberant inflammatory response that prolongs collagen production and increases wound contraction. Severe contractures that occur, for example, after a deep burn can cause loss of function especially if the wound is over a joint such as the elbow or knee. Recently, we have developed a morphoelastic mathematical model for dermal repair that incorporates the chemical, cellular and mechanical aspects of dermal wound healing. Using this model, we examine pathological scarring in dermal repair by first assuming a smaller than usual apoptotic rate for myofibroblasts, and then considering a prolonged inflammatory response, in an attempt to determine a possible optimal intervention strategy to promote normal repair, or terminate the fibrotic scarring response. Our model predicts that in both cases it is best to apply the intervention strategy early in the wound healing response. Further, the earlier an intervention is made, the less aggressive the intervention required. Finally, if intervention is conducted at a late time during healing, a significant intervention is required; however, there is a threshold concentration of the drug or therapy applied, above which minimal further improvement to wound repair is obtained.
Resumo:
In this paper we present a sequential Monte Carlo algorithm for Bayesian sequential experimental design applied to generalised non-linear models for discrete data. The approach is computationally convenient in that the information of newly observed data can be incorporated through a simple re-weighting step. We also consider a flexible parametric model for the stimulus-response relationship together with a newly developed hybrid design utility that can produce more robust estimates of the target stimulus in the presence of substantial model and parameter uncertainty. The algorithm is applied to hypothetical clinical trial or bioassay scenarios. In the discussion, potential generalisations of the algorithm are suggested to possibly extend its applicability to a wide variety of scenarios
Resumo:
Mixture models are a flexible tool for unsupervised clustering that have found popularity in a vast array of research areas. In studies of medicine, the use of mixtures holds the potential to greatly enhance our understanding of patient responses through the identification of clinically meaningful clusters that, given the complexity of many data sources, may otherwise by intangible. Furthermore, when developed in the Bayesian framework, mixture models provide a natural means for capturing and propagating uncertainty in different aspects of a clustering solution, arguably resulting in richer analyses of the population under study. This thesis aims to investigate the use of Bayesian mixture models in analysing varied and detailed sources of patient information collected in the study of complex disease. The first aim of this thesis is to showcase the flexibility of mixture models in modelling markedly different types of data. In particular, we examine three common variants on the mixture model, namely, finite mixtures, Dirichlet Process mixtures and hidden Markov models. Beyond the development and application of these models to different sources of data, this thesis also focuses on modelling different aspects relating to uncertainty in clustering. Examples of clustering uncertainty considered are uncertainty in a patient’s true cluster membership and accounting for uncertainty in the true number of clusters present. Finally, this thesis aims to address and propose solutions to the task of comparing clustering solutions, whether this be comparing patients or observations assigned to different subgroups or comparing clustering solutions over multiple datasets. To address these aims, we consider a case study in Parkinson’s disease (PD), a complex and commonly diagnosed neurodegenerative disorder. In particular, two commonly collected sources of patient information are considered. The first source of data are on symptoms associated with PD, recorded using the Unified Parkinson’s Disease Rating Scale (UPDRS) and constitutes the first half of this thesis. The second half of this thesis is dedicated to the analysis of microelectrode recordings collected during Deep Brain Stimulation (DBS), a popular palliative treatment for advanced PD. Analysis of this second source of data centers on the problems of unsupervised detection and sorting of action potentials or "spikes" in recordings of multiple cell activity, providing valuable information on real time neural activity in the brain.
Resumo:
Open pit mine operations are complex businesses that demand a constant assessment of risk. This is because the value of a mine project is typically influenced by many underlying economic and physical uncertainties, such as metal prices, metal grades, costs, schedules, quantities, and environmental issues, among others, which are not known with much certainty at the beginning of the project. Hence, mining projects present a considerable challenge to those involved in associated investment decisions, such as the owners of the mine and other stakeholders. In general terms, when an option exists to acquire a new or operating mining project, , the owners and stock holders of the mine project need to know the value of the mining project, which is the fundamental criterion for making final decisions about going ahead with the venture capital. However, obtaining the mine project’s value is not an easy task. The reason for this is that sophisticated valuation and mine optimisation techniques, which combine advanced theories in geostatistics, statistics, engineering, economics and finance, among others, need to be used by the mine analyst or mine planner in order to assess and quantify the existing uncertainty and, consequently, the risk involved in the project investment. Furthermore, current valuation and mine optimisation techniques do not complement each other. That is valuation techniques based on real options (RO) analysis assume an expected (constant) metal grade and ore tonnage during a specified period, while mine optimisation (MO) techniques assume expected (constant) metal prices and mining costs. These assumptions are not totally correct since both sources of uncertainty—that of the orebody (metal grade and reserves of mineral), and that about the future behaviour of metal prices and mining costs—are the ones that have great impact on the value of any mining project. Consequently, the key objective of this thesis is twofold. The first objective consists of analysing and understanding the main sources of uncertainty in an open pit mining project, such as the orebody (in situ metal grade), mining costs and metal price uncertainties, and their effect on the final project value. The second objective consists of breaking down the wall of isolation between economic valuation and mine optimisation techniques in order to generate a novel open pit mine evaluation framework called the ―Integrated Valuation / Optimisation Framework (IVOF)‖. One important characteristic of this new framework is that it incorporates the RO and MO valuation techniques into a single integrated process that quantifies and describes uncertainty and risk in a mine project evaluation process, giving a more realistic estimate of the project’s value. To achieve this, novel and advanced engineering and econometric methods are used to integrate financial and geological uncertainty into dynamic risk forecasting measures. The proposed mine valuation/optimisation technique is then applied to a real gold disseminated open pit mine deposit to estimate its value in the face of orebody, mining costs and metal price uncertainties.
Resumo:
In this paper, we describe an analysis for data collected on a three-dimensional spatial lattice with treatments applied at the horizontal lattice points. Spatial correlation is accounted for using a conditional autoregressive model. Observations are defined as neighbours only if they are at the same depth. This allows the corresponding variance components to vary by depth. We use the Markov chain Monte Carlo method with block updating, together with Krylov subspace methods, for efficient estimation of the model. The method is applicable to both regular and irregular horizontal lattices and hence to data collected at any set of horizontal sites for a set of depths or heights, for example, water column or soil profile data. The model for the three-dimensional data is applied to agricultural trial data for five separate days taken roughly six months apart in order to determine possible relationships over time. The purpose of the trial is to determine a form of cropping that leads to less moist soils in the root zone and beyond.We estimate moisture for each date, depth and treatment accounting for spatial correlation and determine relationships of these and other parameters over time.
Resumo:
Modern technology now has the ability to generate large datasets over space and time. Such data typically exhibit high autocorrelations over all dimensions. The field trial data motivating the methods of this paper were collected to examine the behaviour of traditional cropping and to determine a cropping system which could maximise water use for grain production while minimising leakage below the crop root zone. They consist of moisture measurements made at 15 depths across 3 rows and 18 columns, in the lattice framework of an agricultural field. Bayesian conditional autoregressive (CAR) models are used to account for local site correlations. Conditional autoregressive models have not been widely used in analyses of agricultural data. This paper serves to illustrate the usefulness of these models in this field, along with the ease of implementation in WinBUGS, a freely available software package. The innovation is the fitting of separate conditional autoregressive models for each depth layer, the ‘layered CAR model’, while simultaneously estimating depth profile functions for each site treatment. Modelling interest also lay in how best to model the treatment effect depth profiles, and in the choice of neighbourhood structure for the spatial autocorrelation model. The favoured model fitted the treatment effects as splines over depth, and treated depth, the basis for the regression model, as measured with error, while fitting CAR neighbourhood models by depth layer. It is hierarchical, with separate onditional autoregressive spatial variance components at each depth, and the fixed terms which involve an errors-in-measurement model treat depth errors as interval-censored measurement error. The Bayesian framework permits transparent specification and easy comparison of the various complex models compared.
Resumo:
Discrete Markov random field models provide a natural framework for representing images or spatial datasets. They model the spatial association present while providing a convenient Markovian dependency structure and strong edge-preservation properties. However, parameter estimation for discrete Markov random field models is difficult due to the complex form of the associated normalizing constant for the likelihood function. For large lattices, the reduced dependence approximation to the normalizing constant is based on the concept of performing computationally efficient and feasible forward recursions on smaller sublattices which are then suitably combined to estimate the constant for the whole lattice. We present an efficient computational extension of the forward recursion approach for the autologistic model to lattices that have an irregularly shaped boundary and which may contain regions with no data; these lattices are typical in applications. Consequently, we also extend the reduced dependence approximation to these scenarios enabling us to implement a practical and efficient non-simulation based approach for spatial data analysis within the variational Bayesian framework. The methodology is illustrated through application to simulated data and example images. The supplemental materials include our C++ source code for computing the approximate normalizing constant and simulation studies.
Resumo:
Nonhealing wounds are a major burden for health care systems worldwide. In addition, a patient who suffers from this type of wound usually has a reduced quality of life. While the wound healing process is undoubtedly complex, in this paper we develop a deterministic mathematical model, formulated as a system of partial differential equations, that focusses on an important aspect of successful healing: oxygen supply to the wound bed by a combination of diffusion from the surrounding unwounded tissue and delivery from newly formed blood vessels. While the model equations can be solved numerically, the emphasis here is on the use of asymptotic methods to establish conditions under which new blood vessel growth can be initiated and wound-bed angiogenesis can progress. These conditions are given in terms of key model parameters including the rate of oxygen supply and its rate of consumption in the wound. We use our model to discuss the clinical use of treatments such as hyperbaric oxygen therapy, wound bed debridement, and revascularisation therapy that have the potential to initiate healing in chronic, stalled wounds.
Resumo:
The growth of solid tumours beyond a critical size is dependent upon angiogenesis, the formation of new blood vessels from an existing vasculature. Tumours may remain dormant at microscopic sizes for some years before switching to a mode in which growth of a supportive vasculature is initiated. The new blood vessels supply nutrients, oxygen, and access to routes by which tumour cells may travel to other sites within the host (metastasize). In recent decades an abundance of biological research has focused on tumour-induced angiogenesis in the hope that treatments targeted at the vasculature may result in a stabilisation or regression of the disease: a tantalizing prospect. The complex and fascinating process of angiogenesis has also attracted the interest of researchers in the field of mathematical biology, a discipline that is, for mathematics, relatively new. The challenge in mathematical biology is to produce a model that captures the essential elements and critical dependencies of a biological system. Such a model may ultimately be used as a predictive tool. In this thesis we examine a number of aspects of tumour-induced angiogenesis, focusing on growth of the neovasculature external to the tumour. Firstly we present a one-dimensional continuum model of tumour-induced angiogenesis in which elements of the immune system or other tumour-cytotoxins are delivered via the newly formed vessels. This model, based on observations from experiments by Judah Folkman et al., is able to show regression of the tumour for some parameter regimes. The modelling highlights a number of interesting aspects of the process that may be characterised further in the laboratory. The next model we present examines the initiation positions of blood vessel sprouts on an existing vessel, in a two-dimensional domain. This model hypothesises that a simple feedback inhibition mechanism may be used to describe the spacing of these sprouts with the inhibitor being produced by breakdown of the existing vessel's basement membrane. Finally, we have developed a stochastic model of blood vessel growth and anastomosis in three dimensions. The model has been implemented in C++, includes an openGL interface, and uses a novel algorithm for calculating proximity of the line segments representing a growing vessel. This choice of programming language and graphics interface allows for near-simultaneous calculation and visualisation of blood vessel networks using a contemporary personal computer. In addition the visualised results may be transformed interactively, and drop-down menus facilitate changes in the parameter values. Visualisation of results is of vital importance in the communication of mathematical information to a wide audience, and we aim to incorporate this philosophy in the thesis. As biological research further uncovers the intriguing processes involved in tumourinduced angiogenesis, we conclude with a comment from mathematical biologist Jim Murray, Mathematical biology is : : : the most exciting modern application of mathematics.
Resumo:
Background: Although class attendance is linked to academic performance, questions remain about what determines students’ decisions to attend or miss class. Aims: In addition to the constructs of a common decision-making model, the theory of planned behaviour, the present study examined the influence of student role identity and university student (in-group) identification for predicting both the initiation and maintenance of students’ attendance at voluntary peer-assisted study sessions in a statistics subject. Sample: University students enrolled in a statistics subject were invited to complete a questionnaire at two time points across the academic semester. A total of 79 university students completed questionnaires at the first data collection point, with 46 students completing the questionnaire at the second data collection point. Method: Twice during the semester, students’ attitudes, subjective norm, perceived behavioural control, student role identity, in-group identification, and intention to attend study sessions were assessed via on-line questionnaires. Objective measures of class attendance records for each half-semester (or ‘term’) were obtained. Results: Across both terms, students’ attitudes predicted their attendance intentions, with intentions predicting class attendance. Earlier in the semester, in addition to perceived behavioural control, both student role identity and in-group identification predicted students’ attendance intentions, with only role identity influencing intentions later in the semester. Conclusions: These findings highlight the possible chronology that different identity influences have in determining students’ initial and maintained attendance at voluntary sessions designed to facilitate their learning.
Resumo:
PySSM is a Python package that has been developed for the analysis of time series using linear Gaussian state space models (SSM). PySSM is easy to use; models can be set up quickly and efficiently and a variety of different settings are available to the user. It also takes advantage of scientific libraries Numpy and Scipy and other high level features of the Python language. PySSM is also used as a platform for interfacing between optimised and parallelised Fortran routines. These Fortran routines heavily utilise Basic Linear Algebra (BLAS) and Linear Algebra Package (LAPACK) functions for maximum performance. PySSM contains classes for filtering, classical smoothing as well as simulation smoothing.
Resumo:
This thesis presents a mathematical model of the evaporation of colloidal sol droplets suspended within an atmosphere consisting of water vapour and air. The main purpose of this work is to investigate the causes of the morphologies arising within the powder collected from a spray dryer into which the precursor sol for Synroc™ is sprayed. The morphology is of significant importance for the application to storage of High Level Liquid Nuclear Waste. We begin by developing a model describing the evaporation of pure liquid droplets in order to establish a framework. This model is developed through the use of continuum mechanics and thermodynamic theory, and we focus on the specific case of pure water droplets. We establish a model considering a pure water vapour atmosphere, and then expand this model to account for the presence of an atmospheric gas such as air. We model colloidal particle-particle interactions and interactions between colloid and electrolyte using DLVO Theory and reaction kinetics, then incorporate these interactions into an expression for net interaction energy of a single particle with all other particles within the droplet. We account for the flow of material due to diffusion, advection, and interaction between species, and expand the pure liquid droplet models to account for the presence of these species. In addition, the process of colloidal agglomeration is modelled. To obtain solutions for our models, we develop a numerical algorithm based on the Control Volume method. To promote numerical stability, we formulate a new method of convergence acceleration. The results of a MATLAB™ code developed from this algorithm are compared with experimental data collected for the purposes of validation, and further analysis is done on the sensitivity of the solution to various controlling parameters.
Resumo:
In this paper, we apply a simulation based approach for estimating transmission rates of nosocomial pathogens. In particular, the objective is to infer the transmission rate between colonised health-care practitioners and uncolonised patients (and vice versa) solely from routinely collected incidence data. The method, using approximate Bayesian computation, is substantially less computer intensive and easier to implement than likelihood-based approaches we refer to here. We find through replacing the likelihood with a comparison of an efficient summary statistic between observed and simulated data that little is lost in the precision of estimated transmission rates. Furthermore, we investigate the impact of incorporating uncertainty in previously fixed parameters on the precision of the estimated transmission rates.
Resumo:
This paper focuses on the turning point experiences that worked to transform the researcher during a preliminary consultation process to seek permission to conduct of a small pilot project on one Torres Strait Island. The project aimed to learn from parents how they support their children in their mathematics learning. Drawing on a community research design, a consultative meeting was held with one Torres Strait Islander community to discuss the possibility of piloting a small project that focused on working with parents and children to learn about early mathematics processes. Preliminary data indicated that parents use networks in their community. It highlighted the funds of knowledge of mathematics that exist in the community and which are used to teach their children. Such knowledges are situated within a community’s unique histories, culture and the voices of the people. “Omei” tree means the Tree of Wisdom in the Island community.