934 resultados para Materiali compositi, prepreg, RTM, autoclavi, caratterizzazione meccanica, invecchiamento termico
Resumo:
ABSTRACT: The dimension stone qualification through the use of non-destructive tests (NDT) is a relevant research topic for the industrial characterisation of finite products, because the competition of low-costs products can be sustained by an offer of highqualification and a top-guarantee products. The synthesis of potentialities offered by the NDT is the qualification and guarantee similar to the well known agro-industrial PDO, Protected Denomination of Origin. In fact it is possible to guarantee both, the origin and the quality of each stone product element, even through a Factory Production Control on line. A specific disciplinary is needed. A research developed at DICMA-Univ. Bologna in the frame of the “OSMATER” INTERREG project, allowed identifying good correlations between destructive and non-destructive tests for some types of materials from Verbano-Cusio-Ossola region. For example non conventional ultrasonic tests, image analysis parameters, water absorption and other measurements showed to be well correlated with the bending resistance, by relationships varying for each product. In conclusion it has been demonstrated that a nondestructive approach allows reaching several goals, among the most important: 1) the identification of materials; 2) the selection of products; 3) the substitution of DT by NDT. Now it is necessary to move from a research phase to the industrial implementation, as well as to develop new ND technologies focused on specific aims.
Resumo:
This thesis wad aimed at the study and application of titanium dioxide photocatalytic activity on ceramic materials. As a matter of fact, photocatalysis is a very promising method to face most of the problems connected with the increasing environmental pollution. Furthermore, titanium dioxide, in its anatase crystallographic phase, is one of the most investigated photocatalytic material and results to be perfectly compatible with silicate body mixes. That goal was pursued by two different strategies: 1. the addition to a body mix used for heavy clay products of several titania powders, with different mean crystallite size, surface area, morphology and anatase/rutile ratio and a titania nanosuspension as well. The titania addition followed two procedures: bulk and spray addition over the ceramic samples surface. Titania was added in two different percentages: 2.5 and 7.5 wt.% in both of the methods. The ceramic samples were then fired at three maximum temperatures: 900, 950 and 1000 °C. Afterwards, the photocatalytic activity of the prepared ceramic samples was evaluated by following the degradation of an organic compound in aqueous medium, under UV radiation. The influence of titania morphological characteristics on the photoactivity of the fired materials was studied by means of XRD and SEM observations. The ceramic samples, sprayed with a slip containing 7.5 wt.% of titania powder and fired at 900 °C, have the best photoactivity, with a complete photo-decomposition of the organic compound. At 1000 °C no sample acted as a photocatalyst due to the anatase-to-rutile phase transformation and to the reaction between titania and calcium and iron oxides in the raw materials. 2. The second one foresaw the synthesis of TiO2-SiO2 solid solutions, using the following stoichiometry: Ti1-xSixO2 where x = 0, 0.1, 0.3 and 0.5 atoms per formula unit (apfu). The mixtures were then fired following two thermal cycles, each with three maximum temperatures. The effect of SiO2 addition into the TiO2 crystal structure and, consequently, on its photocatalytic activity when fired at high temperature, was thoroughly investigated by means of XRD, XPS, FE-SEM, TEM and BET analysis. The photoactivity of the prepared powders was assessed both in gas and liquid phase. Subsequently, the TiO2-SiO2 solid solutions, previously fired at 900 °C, were sprayed over the ceramic samples surface in the percentage of 7.5 wt.%. The prepared ceramic samples were fired at 900 and 1000 °C. The photocatalytic activity of the ceramic samples was evaluated in liquid phase. Unfortunately, that samples did not show any appreciable photoactivity. In fact, samples fired at 900 °C showed a pretty low photoactivity, while the one fired at 1000 °C showed no photoactivity at all. This was explained by the excessive coarsening of titania particles. To summarise, titania particle size, more than its crystalline phase, seems to have a relevant role in the photocatalytic activity of the ceramic samples.
Resumo:
1,3,5–Tris(N,N-dialkylamino)benzene derivatives are strongly activated neutral carbon nucleophiles able to stress some reactivity aspects toward more or less activated electrophilic substrates. These very interesting electron-rich benzenes have been firstly synthesized in 1967 and extensively studied. Their supernucleophilic character permits to perform reactions in particularly mild conditions, and make them suitable for mechanistic investigations. In many reactions they permit to isolate –complexes in electrophilic aromatic reactions. The possibility to form moderately stable Wheland intermediates depends both, on the activation of the reagents and on the experimental conditions which makes slow the proton elimination in the re-aromatization process. In presence of a carbon super electrophile reagent as 4,6-dinitrobenzofuroxan or 4,6-dinitrotetrazolepiridine, 1,3,5–tris(N,N-dialkylamino)benzene derivatives afford C–C coupling products which are “double σ complexes”, Wheland–like on the 1,3,5-tris(N,N-dialkylamino)benzene moiety, and Meisenheimer–like on the electrophile moiety. We named these complexes as Wheland–Meisenheimer (W-M) complexes. These complexes are moderately stable at low temperature and they were characterized by NMR spectroscopy methods. Others nucleophile reagents as 2-aminothiazole derivatives give a Wheland-Meisenheimer complex with 4,6-dinitrobenzofuroxan.
Resumo:
Porous materials are widely used in many fields of industrial applications, to achieve the requirements of noise reduction, that nowadays derive from strict regulations. The modeling of porous materials is still a problematic issue. Numerical simulations are often problematic in case of real complex geometries, especially in terms of computational times and convergence. At the same time, analytical models, even if partly limited by restrictive simplificative hypotheses, represent a powerful instrument to capture quickly the physics of the problem and general trends. In this context, a recently developed numerical method, called the Cell Method, is described, is presented in the case of the Biot's theory and applied for representative cases. The peculiarity of the Cell Method is that it allows for a direct algebraic and geometrical discretization of the field equations, without any reduction to a weak integral form. Then, the second part of the thesis presents the case of interaction between two poroelastic materials under the context of double porosity. The idea of using periodically repeated inclusions of a second porous material into a layer composed by an original material is described. In particular, the problem is addressed considering the efficiency of the analytical method. A analytical procedure for the simulation of heterogeneous layers based is described and validated considering both conditions of absorption and transmission; a comparison with the available numerical methods is performed. ---------------- I materiali porosi sono ampiamente utilizzati per diverse applicazioni industriali, al fine di raggiungere gli obiettivi di riduzione del rumore, che sono resi impegnativi da norme al giorno d'oggi sempre più stringenti. La modellazione dei materiali porori per applicazioni vibro-acustiche rapprensenta un aspetto di una certa complessità. Le simulazioni numeriche sono spesso problematiche quando siano coinvolte geometrie di pezzi reali, in particolare riguardo i tempi computazionali e la convergenza. Allo stesso tempo, i modelli analitici, anche se parzialmente limitati a causa di ipotesi semplificative che ne restringono l'ambito di utilizzo, rappresentano uno strumento molto utile per comprendere rapidamente la fisica del problema e individuare tendenze generali. In questo contesto, un metodo numerico recentemente sviluppato, il Metodo delle Celle, viene descritto, implementato nel caso della teoria di Biot per la poroelasticità e applicato a casi rappresentativi. La peculiarità del Metodo delle Celle consiste nella discretizzazione diretta algebrica e geometrica delle equazioni di campo, senza alcuna riduzione a forme integrali deboli. Successivamente, nella seconda parte della tesi viene presentato il caso delle interazioni tra due materiali poroelastici a contatto, nel contesto dei materiali a doppia porosità. Viene descritta l'idea di utilizzare inclusioni periodicamente ripetute di un secondo materiale poroso all'interno di un layer a sua volta poroso. In particolare, il problema è studiando il metodo analitico e la sua efficienza. Una procedura analitica per il calcolo di strati eterogenei di materiale viene descritta e validata considerando sia condizioni di assorbimento, sia di trasmissione; viene effettuata una comparazione con i metodi numerici a disposizione.
Resumo:
The work of this thesis has been focused on the characterization of metallic membranes for the hydrogen purification from steam reforming process and also of perfluorosulphonic acid ionomeric (PFSI) membranes suitable as electrolytes in fuel cell applications. The experimental study of metallic membranes was divided in three sections: synthesis of palladium and silver palladium coatings on porous ceramic support via electroless deposition (ELD), solubility and diffusivity analysis of hydrogen in palladium based alloys (temperature range between 200 and 400 °C up to 12 bar of pressure) and permeation experiments of pure hydrogen and mixtures containing, besides hydrogen, also nitrogen and methane at high temperatures (up to 600 °C) and pressures (up to 10 bar). Sequential deposition of palladium and silver on to porous alumina tubes by ELD technique was carried out using two different procedures: a stirred batch and a continuous flux method. Pure palladium as well as Pd-Ag membranes were produced: the Pd-Ag membranes’ composition is calculated to be close to 77% Pd and 23% Ag by weight which was the target value that correspond to the best performance of the palladium-based alloys. One of the membranes produced showed an infinite selectivity through hydrogen and relatively high permeability value and is suitable for the potential use as a hydrogen separator. The hydrogen sorption in silver palladium alloys was carried out in a gravimetric system on films produced by ELD technique. In the temperature range inspected, up to 400°C, there is still a lack in literature. The experimental data were analyzed with rigorous equations allowing to calculate the enthalpy and entropy values of the Sieverts’ constant; the results were in very good agreement with the extrapolation made with literature data obtained a lower temperature (up to 150 °C). The information obtained in this study would be directly usable in the modeling of hydrogen permeation in Pd-based systems. Pure and mixed gas permeation tests were performed on Pd-based hydrogen selective membranes at operative conditions close to steam-reforming ones. Two membranes (one produced in this work and another produced by NGK Insulators Japan) showed a virtually infinite selectivity and good permeability. Mixture data revealed the existence of non negligible resistances to hydrogen transport in the gas phase. Even if the decrease of the driving force due to polarization concentration phenomena occurs, in principle, in all membrane-based separation systems endowed with high perm-selectivity, an extensive experimental analysis lack, at the moment, in the palladium-based membrane process in literature. Moreover a new procedure has been introduced for the proper comparison of the mass transport resistance in the gas phase and in the membrane. Another object of study was the water vapor sorption and permeation in PFSI membranes with short and long side chains was also studied; moreover the permeation of gases (i.e. He, N2 and O2) in dry and humid conditions was considered. The water vapor sorption showed strong interactions between the hydrophilic groups and the water as revealed from the hysteresis in the sorption-desorption isotherms and thermo gravimetric analysis. The data obtained were used in the modeling of water vapor permeation, that was described as diffusion-reaction of water molecules, and in the humid gases permeation experiments. In the dry gas experiments the permeability and diffusivity was found to increase with temperature and with the equivalent weight (EW) of the membrane. A linear correlation was drawn between the dry gas permeability and the opposite of the equivalent weight of PFSI membranes, based on which the permeability of pure PTFE is retrieved in the limit of high EW. In the other hand O2 ,N2 and He permeability values was found to increase significantly, and in a similar fashion, with water activity. A model that considers the PFSI membrane as a composite matrix with a hydrophilic and a hydrophobic phase was considered allowing to estimate the variation of gas permeability with relative humidity on the basis of the permeability in the dry PFSI membrane and in pure liquid water.
Resumo:
The Poxviruses are a family of double stranded DNA (dsDNA) viruses that cause disease in many species, both vertebrate and invertebrate. Their genomes range in size from 135 to 365 kbp and show conservation in both organization and content. In particular, the central genomic regions of the chordopoxvirus subfamily (those capable of infecting vertebrates) contain 88 genes which are present in all the virus species characterised to date and which mostly occur in the same order and orientation. In contrast, however, the terminal regions of the genomes frequently contain genes that are species or genera-specific and that are not essential for the growth of the virus in vitro but instead often encode factors with important roles in vivo including modulation of the host immune response to infection and determination of the host range of the virus. The Parapoxviruses (PPV), of which Orf virus is the prototypic species, represent a genus within the chordopoxvirus subfamily of Poxviridae and are characterised by their ability to infect ruminants and humans. The genus currently contains four recognised species of virus, bovine papular stomatitis virus (BPSV) and pseudocowpox virus (PCPV) both of which infect cattle, orf virus (OV) that infects sheep and goats, and parapoxvirus of red deer in New Zealand (PVNZ). The ORFV genome has been fully sequenced, as has that of BPSV, and is ~138 kb in length encoding ~132 genes. The vast majority of these genes allow the virus to replicate in the cytoplasm of the infected host cell and therefore encode proteins involved in replication, transcription and metabolism of nucleic acids. These genes are well conserved between all known genera of poxviruses. There is however another class of genes, located at either end of the linear dsDNA genome, that encode proteins which are non-essential for replication and generally dictate host range and virulence of the virus. The non-essential genes are often the most variable within and between species of virus and therefore are potentially useful for diagnostic purposes. Given their role in subverting the host-immune response to infection they are also targets for novel therapeutics. The function of only a relatively small number of these proteins has been elucidated and there are several genes whose function still remains obscure principally because there is little similarity between them and proteins of known function in current sequence databases. It is thought that by selectively removing some of the virulence genes, or at least neutralising the proteins in some way, current vaccines could be improved. The evolution of poxviruses has been proposed to be an adaptive process involving frequent events of gene gain and loss, such that the virus co-evolves with its specific host. Gene capture or horizontal gene transfer from the host to the virus is considered an important source of new viral genes including those likely to be involved in host range and those enabling the virus to interfere with the host immune response to infection. Given the low rate of nucleotide substitution, recombination can be seen as an essential evolutionary driving force although it is likely underestimated. Recombination in poxviruses is intimately linked to DNA replication with both viral and cellular proteins participate in this recombination-dependent replication. It has been shown, in other poxvirus genera, that recombination between isolates and perhaps even between species does occur, thereby providing another mechanism for the acquisition of new genes and for the rapid evolution of viruses. Such events may result in viruses that have a selective advantage over others, for example in re-infections (a characteristic of the PPV), or in viruses that are able to jump the species barrier and infect new hosts. Sequence data related to viral strains isolated from goats suggest that possible recombination events may have occurred between OV and PCPV (Ueda et al. 2003). The recombination events are frequent during poxvirus replication and comparative genomic analysis of several poxvirus species has revealed that recombinations occur frequently on the right terminal region. Intraspecific recombination can occur between strains of the same PPV species, but also interspecific recombination can happen depending on enough sequence similarity to enable recombination between distinct PPV species. The most important pre-requisite for a successful recombination is the coinfection of the individual host by different virus strains or species. Consequently, the following factors affecting the distribution of different viruses to shared target cells need to be considered: dose of inoculated virus, time interval between inoculation of the first and the second virus, distance between the marker mutations, genetic homology. At present there are no available data on the replication dynamics of PPV in permissive and non permissive hosts and reguarding co-infetions there are no information on the interference mechanisms occurring during the simultaneous replication of viruses of different species. This work has been carried out to set up permissive substrates allowing the replication of different PPV species, in particular keratinocytes monolayers and organotypic skin cultures. Furthermore a method to isolate and expand ovine skin stem cells was has been set up to indeep further aspects of viral cellular tropism during natural infection. The study produced important data to elucidate the replication dynamics of OV and PCPV virus in vitro as well as the mechanisms of interference that can arise during co-infection with different viral species. Moreover, the analysis carried on the genomic right terminal region of PCPV 1303/05 contributed to a better knowledge of the viral genes involved in host interaction and pathogenesis as well as to locate recombination breakpoints and genetic homologies between PPV species. Taken together these data filled several crucial gaps for the study of interspecific recombinations of PPVs which are thought to be important for a better understanding of the viral evolution and to improve the biosafety of antiviral therapy and PPV-based vectors.
Resumo:
Lo studio sviluppato nella tesi fa riferimento all’ampio database sperimentale raccolto presso il sito campione di Treporti (VE), nell’ambito di un progetto di ricerca finalizzato alla caratterizzazione geotecnica del complesso sottosuolo della Laguna Veneta. Il sottosuolo lagunare è infatti caratterizzato da una fitta alternanza di sedimenti a matrice prevalentemente limosa, dal comportamento intermedio fra sabbie e argille. Il progetto di ricerca prevedeva la realizzazione di una vasta campagna di indagini in sito, articolata in più fasi e integrata da un programma sperimentale di laboratorio; nell’area in esame è stato inoltre costruito un rilevato sperimentale in vera grandezza, continuamente monitorato con una sofisticata strumentazione per circa quattro anni, fino alla sua graduale rimozione. Il lavoro di tesi proposto riguarda l’analisi dei dati provenienti dalle numerose prove dilatometriche (DMT) e con piezocono (CPTU) effettuate a Treporti, con particolare riferimento alle prove di tipo sismico (SDMT e SCPTU) realizzate sia prima della costruzione del rilevato sia a seguito della rimozione dello stesso. Rispetto alla prove “tradizionali”, le prove sismiche permettono anche la misura della velocità delle onde di taglio (Vs), la cui conoscenza è richiesta anche dalle recenti Norme Tecniche delle Costruzioni e della quale è possibile risalire agevolmente al modulo di rigidezza elastico a piccolissime deformazioni (G0). L’enorme database raccolto in questo sito offre tra l’altro l’interessante ed inusuale possibilità di mettere a confronto dati ricavati da prove dilatometriche e con piezocono relative a verticali adiacenti, svolte in diverse fasi della storia di carico imposta al sottosuolo dell’area mediante la costruzione del rilevato. L’interpretazione dei dati penetrometrici e dilatometrici è stata fatta utilizzando i più recenti approcci interpretativi proposti nella letteratura del settore. È importante sottolineare che la possibilità di classificare e stimare i parametri meccanici del sottosuolo lagunare a partire da prove diverse ha permesso una valutazione critica delle procedure interpretative adottate e, in taluni casi, ha messo in evidenza i limiti di alcuni approcci, pur se limitatamente al caso specifico in esame. In alcuni casi, grazie all’uso integrato delle prove dilatometriche e penetrometriche è stato possibile mettere a punto specifiche correlazioni alternative a quelle esistenti, calibrate sui dati sperimentali di Treporti.
Resumo:
In questa Tesi vengono trattati alcuni temi relativi alla modellizzazione matematica delle Transizioni di Fase, il cui filo conduttore è la descrizione basata su un parametro d'ordine, originato dalla Teoria di Landau. Dopo aver presentato in maniera generale un modo di approccio alla dinamica delle transizioni mediante campo di fase, con particolare attenzione al problema della consistenza termodinamica nelle situazioni non isoterme, si considerano tre applicazioni di tale metodo a transizioni di fase specifiche: la transizione ferromagnetica, la transizione superconduttrice e la transizione martensitica nelle leghe a memoria di forma (SMA). Il contributo maggiore viene fornito nello studio di quest'ultima transizione di fase per la quale si è elaborato un modello a campo di fase termodinamicamente consistente, atto a descriverne le proprietà termomeccaniche essenziali.