948 resultados para Marble waste
Resumo:
This paper reports on a technical feasibility study of the production of organo-mineral fertiliser from the co-granulation of limestone powders with tea waste. The results from this preliminary study show that the co-granulation of tea waste provided an alternative method of waste recovery, as it converts the waste into a value-added product. Fertiliser granules were successfully produced from various compositions of limestone and tea waste. The effect of tea waste concentration on granule strength was analysed; the granule strength
was in the range 0.2 to 1.8 MPa depending on powder composition; increasing the tea waste mass fraction resulted in a reduction in granule strength.Varying the teawaste to limestone ratio also influenced the compressibility of the granules; the granules compressibility increased with increasing tea waste mass fraction. It was further found that increasing the mass fraction of tea waste in the binary mixture of powder reduced the granule median size of the batch.
Resumo:
Waste management and sustainability are two core underlying philosophies that the construction sector must acknowledge and implement; however, this can prove difficult and time consuming. To this end, the aim of this paper is to examine waste management strategies and the possible benefits, advantages and disadvantages to their introduction and use, while also to examine any inter-relationship with sustainability, particularly at the design stage. The purpose of this paper is to gather, examine and review published works and investigate factors which influence economic decisions at the design phase of a construction project. In addressing this aim, a three tiered sequential research approach is adopted; in-depth literature review, interviews/focus groups and qualitative analysis. The resulting data is analyzed, discussed, with potential conclusions identified; paying particular attention to implications for practice within architectural firms. This research is of importance, particularly to the architectural sector, as it can add to the industry’s understanding of the design process, while also considering the application and integration of waste management into the design procedure. Results indicate that the researched topic had many advantages but also had inherent disadvantages. It was found that the potential advantages outweighed disadvantages, but uptake within industry was still slow and that better promotion and their benefits to; sustainability, the environment, society and the industry were required.
Resumo:
While waste is increasingly viewed as a resource to be globally traded, increased regulatory control on waste across Europe has created the conditions where waste crime now operates alongside a legitimate waste sector. Waste crime,is an environmental crime and a form of white-collar crime, which exploits the physical characteristics of waste, the complexity of the collection and downstream infrastructure, and the market opportunities for profit. This paper highlights some of the factors which make the waste sector vulnerable to waste crime. These factors include new legislation and its weak regulatory enforcement, the economics of waste treatment, where legal and safe treatment of waste can be more expensive than illegal operations, the complexity of the waste sector and the different actors who can have some involvement, directly or indirectly, in the movement of illegal wastes, and finally that waste can be hidden or disguised and creates an opportunity for illegal businesses to operate alongside legitimate waste operators. The study also considers waste crime from the perspective of particular waste streams that are often associated with illegal shipment or through illegal treatment and disposal. For each, the nature of the crime which occurs is shown to differ, but for each, vulnerabilities to waste crime are evident. The paper also describes some approaches which can be adopted by regulators and those involved in developing new legislation for identifying where opportunities for waste crime occurs and how to prevent it.
Resumo:
The purpose of this research is to identify and assess the opportunities and challenges of implementing a Site Waste Management Plan (SWMP) on projects irrespective of size. In the UK, construction and demolition waste accounts for a third of all UK waste. There are a number of factors that influence the implementation of SWMPs. In order to identify and analyse these factors, 4 unstructured interviews were carried out and a sample of 56 participants completed a questionnaire survey. The scope of the study was limited to UK
construction industry professionals. The analysis revealed that more needs to be done if the industry is to meet government targets of reduction in construction related waste going to landfill. In addition, although SWMP may not yet be legally required on all construction projects, clients and contractors need to realise
the benefits to cut costs and implement best practice by adopting a SWMP. The benefits of implementing a SWMP will not only help to achieve this but also gain significant cost savings on projects and is also extremely beneficial to the environment. This study presents evidence that contractors need to do more to reduce waste and draws a clear link between waste reduction and the implementation of SWMPs. The findings are useful in the ongoing efforts to encourage the industry to find smarter, more efficient and less
damaging ways to operate
Resumo:
This paper presents the rational for the selection of fluids for use in a model based study of sub and supercritical Waste Heat Recovery (WHR) Organic Rankine Cycle (ORC). The study focuses on multiple vehicle heat sources and the potential of WHR ORC’s for its conversion into useful work. The work presented on fluid selection is generally applicable to any waste heat recovery system, either stationary or mobile and, with careful consideration, is also applicable to single heat sources. The fluid selection process presented reduces the number of potential fluids from over one hundred to a group of under twenty fluids for further refinement in a model based WHR ORC performance study. The selection process uses engineering judgement, legislation and, where applicable, health and safety as fluid selection or de-selection criteria. This paper also investigates and discusses the properties of specific ORC fluids with regard to their impact on the theoretical potential for delivering efficient WHR ORC work output. The paper concludes by looking at potential temperature and pressure WHR ORC limits with regard to fluid properties thereby assisting with the generation of WHR ORC simulation boundary conditions.
Resumo:
In order to meet the recycling and recovery targets set forth by the European Union's (EU) Waste and Landfill Directives, both the Irish and Czech governments’ policy on waste management is changing to meet these pressures, with major emphasis being placed upon the management of biodegradable municipal waste (BMW). In particular, the EU Landfill Directive requires reductions in the rate of BMW going to landfill to 35% of 1995 values by 2016 and 2020 for Ireland and the Czech Republic, respectively. In this paper, the strategies of how Ireland and the Czech Republic plan to meet this challenge are compared. Ireland either landfills or exports its waste for recovery, while the Czech Republic has a relatively new waste management infrastructure. While Ireland met the first target of 75% diversion of BMW from landfill by 2010 and preliminary 2012 data indicate that Ireland is on track to meet the 2013 target, the achievement of the 2016 target remains at risk. Indicators that were developed to monitor the Czech Republic's path to meeting the targets demonstrate that it did not meet the first target that was set for 2010 and will probably not meet its 2013 target either. The evaluation reports on the implementation of Waste Management Plan of Czech Republic suggest that the currently applied strategy to divert biodegradable waste from landfill is not effective enough. For both countries, the EU Waste Framework and Landfill Directives will be a significant influence and driver of change in waste management practices and governance over the coming decade. This means that both countries will not only have to invest in infrastructure to achieve the targets, but will also have to increase awareness among the public in diverting this waste at the household level. Improving environmental education is part of increased awareness as it is imperative for citizens to understand the consequences of their actions as affluence continues to grow producing increased levels of waste.
Graphical abstract
Despite the differences in the levels of waste generation in both the Czech Republic and Ireland, each country can learn from each other in order to meet the recycling and recovery targets set by the European Union's (EU) Waste and Landfill Directives. Both countries will not only have to invest in infrastructure to achieve the targets, but will also have to increase awareness among the public in diverting this waste at the household level. In addition, there needs to be minimum safe standards when land-spreading organic agricultural and organic municipal and industrial materials on agricultural land used for food production, as well as incentives to increase BMW diversion from landfill such as the increased landfill levy implemented in Ireland and the acceptance of MBT and/or incineration as a means of treating residual waste.
Resumo:
The construction industry in Northern Ireland is one of the major contributors of construction waste to landfill each year. The aim of this research paper is to identify the core on-site management causes of material waste on construction sites in Northern Ireland and to illustrate various methods of prevention which can be adopted. The research begins with a detailed literature review and is complemented with the conduction of semi-structured interviews with 6 professionals who are experienced and active within the Northern Ireland construction industry. Following on from the literature review and interviews analysis, a questionnaire survey is developed to obtain further information in relation to the subject area. The questionnaire is based on the key findings of the previous stages to direct the research towards the most influential factors. The analysis of the survey responses reveals that the core causes of waste generation include a rushed program, poor handling and on-site damage of materials, while the principal methods of prevention emerge as the adequate storage, the reuse of material on-site and efficient material ordering. Furthermore, the role of the professional background in the shaping of perceptions relevant to waste management is also investigated and significant differences are identified. The findings of this research are beneficial for the industry as they enhance the understanding of construction waste generation causes and highlight the practices required to reduce waste on-site in the context of sustainable development.
Resumo:
The water treatment capability of a novel photocatalytic slurry reactor was investigated using methylene blue (MB) as a model pollutant in an aqueous suspension. A pellet TiO 2 catalyst was employed and this freed the system from the need of filtration of catalyst following photocatalysis. This configuration combines the high surface area contact of catalyst with pollutant of the slurry reactor and also offers a high illumination of catalyst by its unique array of weir-like baffles. In this work, the batch adsorption of MB from aqueous solution (10μM) onto the TiO 2 catalyst was studied, adsorption isotherms and kinetics were determined from the experimental data. Complete degradation of MB was achieved within 60 min illumination with various loadings of catalyst (30-200 g L -1). A modest catalyst loading (30 g L -1) achieved 98% degradation within 60 min of irradiation. Experimental results indicate that this novel reactor configuration has a high effective mass transfer rate and UV light penetration characteristics.
Resumo:
One effective approach is to destroy industrial waste and pollution is the use of a semiconductor photocatalysis system. To date such, photocatalysis systems have employed conventional linear light sources. Initial results from a study of a photocatalysis system incorporating a tripled Nd:YAG laser are reported. The laser light not only played a roll as a light source for activating the photocatalyst(TiO2), but also destroyed the organic species directly via a photochemical process. The reaction intermediates and changes in their concentrations are monitored using HPLC. The relationship between the power of laser and kinetics of photoreaction are discussed.