289 resultados para Malicious mischief


Relevância:

10.00% 10.00%

Publicador:

Resumo:

With hundreds of millions of users reporting locations and embracing mobile technologies, Location Based Services (LBSs) are raising new challenges. In this dissertation, we address three emerging problems in location services, where geolocation data plays a central role. First, to handle the unprecedented growth of generated geolocation data, existing location services rely on geospatial database systems. However, their inability to leverage combined geographical and textual information in analytical queries (e.g. spatial similarity joins) remains an open problem. To address this, we introduce SpsJoin, a framework for computing spatial set-similarity joins. SpsJoin handles combined similarity queries that involve textual and spatial constraints simultaneously. LBSs use this system to tackle different types of problems, such as deduplication, geolocation enhancement and record linkage. We define the spatial set-similarity join problem in a general case and propose an algorithm for its efficient computation. Our solution utilizes parallel computing with MapReduce to handle scalability issues in large geospatial databases. Second, applications that use geolocation data are seldom concerned with ensuring the privacy of participating users. To motivate participation and address privacy concerns, we propose iSafe, a privacy preserving algorithm for computing safety snapshots of co-located mobile devices as well as geosocial network users. iSafe combines geolocation data extracted from crime datasets and geosocial networks such as Yelp. In order to enhance iSafe's ability to compute safety recommendations, even when crime information is incomplete or sparse, we need to identify relationships between Yelp venues and crime indices at their locations. To achieve this, we use SpsJoin on two datasets (Yelp venues and geolocated businesses) to find venues that have not been reviewed and to further compute the crime indices of their locations. Our results show a statistically significant dependence between location crime indices and Yelp features. Third, review centered LBSs (e.g., Yelp) are increasingly becoming targets of malicious campaigns that aim to bias the public image of represented businesses. Although Yelp actively attempts to detect and filter fraudulent reviews, our experiments showed that Yelp is still vulnerable. Fraudulent LBS information also impacts the ability of iSafe to provide correct safety values. We take steps toward addressing this problem by proposing SpiDeR, an algorithm that takes advantage of the richness of information available in Yelp to detect abnormal review patterns. We propose a fake venue detection solution that applies SpsJoin on Yelp and U.S. housing datasets. We validate the proposed solutions using ground truth data extracted by our experiments and reviews filtered by Yelp.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In recent years, there has been an enormous growth of location-aware devices, such as GPS embedded cell phones, mobile sensors and radio-frequency identification tags. The age of combining sensing, processing and communication in one device, gives rise to a vast number of applications leading to endless possibilities and a realization of mobile Wireless Sensor Network (mWSN) applications. As computing, sensing and communication become more ubiquitous, trajectory privacy becomes a critical piece of information and an important factor for commercial success. While on the move, sensor nodes continuously transmit data streams of sensed values and spatiotemporal information, known as ``trajectory information". If adversaries can intercept this information, they can monitor the trajectory path and capture the location of the source node. This research stems from the recognition that the wide applicability of mWSNs will remain elusive unless a trajectory privacy preservation mechanism is developed. The outcome seeks to lay a firm foundation in the field of trajectory privacy preservation in mWSNs against external and internal trajectory privacy attacks. First, to prevent external attacks, we particularly investigated a context-based trajectory privacy-aware routing protocol to prevent the eavesdropping attack. Traditional shortest-path oriented routing algorithms give adversaries the possibility to locate the target node in a certain area. We designed the novel privacy-aware routing phase and utilized the trajectory dissimilarity between mobile nodes to mislead adversaries about the location where the message started its journey. Second, to detect internal attacks, we developed a software-based attestation solution to detect compromised nodes. We created the dynamic attestation node chain among neighboring nodes to examine the memory checksum of suspicious nodes. The computation time for memory traversal had been improved compared to the previous work. Finally, we revisited the trust issue in trajectory privacy preservation mechanism designs. We used Bayesian game theory to model and analyze cooperative, selfish and malicious nodes' behaviors in trajectory privacy preservation activities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In mobile social networks (MSNs), the routing packet is forwarded from any user of in a group to any user of the other group until it reaches the destination group - the group where the destination is located. However, it is inevitable that malicious groups could compromise the quality and reliability of data. To alleviate such effect, analyzing the trustworthiness of a group has a positive influence on the confidence with which a group conducts transactions with that group. In our previous work, the feature-based first-priority relation graph (FPRG) of MSNs is proposed, in which two vertices (groups) are connected iff they have a first-priority relationship. In this paper, the trustworthiness computation of a group is firstly presented in the algorithm TC (Trustworthiness Computing) based on the FPRG. The trustworthiness of a group is evaluated based on the trustworthiness of neighbors and the number of malicious users in the group. We then establish the Trustworthiness-Hypercube-based Reliable Communication (THRC) algorithm in MSNs. The algorithm THRC can provide an effective and reliable data delivery routing. Finally, we also give two scenario simulations to elaborate the processes of the trustworthiness computation and reliable communication.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wireless Sensor Networks (WSNs) provide a low cost option for monitoring different environments such as farms, forests and water and electricity networks. However, the restricted energy resources of the network impede the collection of raw monitoring data from all the nodes to a single location for analysis. This has stimulated research into efficient anomaly detection techniques to extract information about unusual events such as malicious attacks or faulty sensors at each node. Many previous anomaly detection methods have relied on centralized processing of measurement data, which is highly communication intensive. In this paper, we present an efficient algorithm to detect anomalies in a decentralized manner. In particular, we propose a novel adaptive model for anomaly detection, as well as a robust method for modeling normal behavior. Our evaluation results on both real-life and simulated data sets demonstrate the accuracy of our approach compared to existing methods.