982 resultados para Magnetic nanoparticles


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A near-infrared luminescent macroporous material (PL-Macromaterial) and a near-infrared luminescent/magnetic bifunctional macroporous material (MML-Macromaterial) were synthesized by using polystyrene microspheres (PS) and Fe3O4 @polystyrene core-shell nanoparticles (Fe3O4@PS), respectively, as templates. Both the PL-Macromaterial and the M/PL-Macromaterial show the characteristic emission of the Er 3, ion. Moreover, the M/PL-Macromaterial possesses superparamagnetic properties at room temperature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this article, a novel strategy was applied to prepare dispersed ultrafine alpha-Fe2O3 nanoparticles. The initial Fe(OH)(3) nanoparticles were synthesized by the reaction of NaOH and FeCl3 in alcohol. With the new-formed nanoparticles as nuclei, NaCl crystallized and encapsulated the particles into solid cages. As a result, the nanoparticles were prevented from aggregating and growing. The composite of Fe(OH)(3) and NaCl was calcined and then washed by water to obtain the pure alpha-Fe2O3 nanoparticles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we have reported a facile method for the synthesis of ordered magnetic core-manganese oxide shell nanostructures. The process included two steps. First, manganese ferrite nanoparticles were obtained through a solvothermal method. Then, the manganese ferrite nanoparticles were mixed directly with KMnO4 solution without any additional modified procedures of the magnetic cores. It has been found that Mn element in the core can react with KMnO4 to form manganese oxide which acts as a seed for the in-situ growth of manganese oxide shells. This is significant for the controllable fabrication of symmetrical ordered manganese oxide shell structures. The shell thickness can be easily controlled through the reaction time. Transmission electron microscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, X-ray powder diffraction and energy-dispersive X-ray spectroscopy have been employed to characterize the products at different reaction time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, hydrothermal synthesized Fe3O4 microspheres have been encapsulated with nonporous silica and a further layer of ordered mesoporous silica through a simple sol-gel process. The surface of the outer silica shell was further functionalized by the deposition of YVO4:Eu3+ phosphors, realizing a sandwich structured material with mesoporous, magnetic and luminescent properties. The multifunctional system was used as drug carrier to investigate the storage and release properties using ibuprofen (IBU) as model drug by the surface modification. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS), Fourier transform infrared spectroscopy (FT-IR), N-2 adsorption/desorption, photoluminescence (PL) spectra, and superconducting quantum interference device (SQUID) were used to characterized the samples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Magnetically functionalized mesoporous silica spheres with different size (average diameter, A.D.) from 150 nm to 2 mu m and pore size distribution were synthesized by generating magnetic FexOy nanoparticles onto the mesoporous silica hosts using the sol-gel method. The X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), N-2 adsorption/desorption results show that these composites conserved regular sphere morphology and ordered mesoporous structure after the formation of FexOy nanoparticles. XRD and X-ray photoelectron spectroscopy (XPS) analysis confirmed that the FexOy generated in these mesoporous silica hosts is mainly composed of gamma-Fe2O3. Magnetic measurements reveal that these composites with different gamma-Fe2O3 loading amounts possess super-paramagnetic properties at 300 K, and the saturation magnetization increases with increasing Fe ratio loaded.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Magnetic functionalization of the ordered mesoporous SBA-15 (SiO2) aggregate blocks and rice grain-like particles were realized by using a sol-gel method, resulting in the formation of FexOy@SBA-15 composite materials. The X-ray diffraction (XRD), N-2 adsorption/desorption, and transmission electron microscopy (TEM) results show that these composites conserved ordered mesoporous structure after the formation of FexOy nanoparticles in the pores and on the outer surface of SBA-15. It was confirmed by the XRD and X-ray photoelectron spectroscopy (XPS) analysis that the FexOy generated in these mesoporous silica hosts is mainly composed of gamma-Fe2O3. Magnetic measurements reveal that these composites possess superparamagnetic properties at 300 K. The saturation magnetization of these composites increased with the increasing loading amount of gamma-Fe2O3. These composites, which possess high surface area and high pore volume, show magnetic response sufficient for drug targeting in the presence of an external magnetic field.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A large-scale process combined sonication with self-assembly techniques for the preparation of high-density gold nanoparticles supported on a [Ru(bpy)(3)](2+)-doped silica/Fe3O4 nanocomposite (GNRSF) is provided. The obtained hybrid nanomaterials containing Fe3O4 spheres have high saturation magnetization, which leads to their effective immobilization on the surface of an ITO electrode through simple manipulation by an external magnetic field (without the need of a special immobilization apparatus). Furthermore, this hybrid nanomaterial film exhibits a good and very stable electrochemiluminescence (ECL) behavior, which gives a linear response for tripropylamine (TPA) concentrations between 5 mu m and 0.21 mM, with a detection limit in the micromolar range. The sensitivity of this ECL sensor can be easily controlled by the amount of [Ru(bpy)(3)](2+) immobilized on the hybrid nanomaterials (that is, varying the amount of [Ru(bpy)(3)](2+) during GNRSF synthesis).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report here a novel AMP biosensor based on the aptamer-induced disassembly of fluorescent and magnetic nano-silica sandwich complexes with a direct detection limit of 0.1 mu M.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of Pr0.55Ca0.45MnO3 compounds with average particle size ranging from 2000 to 30 nm have been synthesized by the sol-gel method and their charge ordering (CO) and magnetic properties are investigated. It is observed that with particle size decreasing, the CO transition is gradually suppressed and finally disappears upon particle size down to 35 nm, while the ferromagnetism (FM) emerges and exhibits a nonmonotonous variation with a maximum at 45 nm samples. The FM components in all samples never reach long-range ordering but rather only show short-range clusters. A new explanation considering the coupling between lattice, charge, and spin in the system is raised to understand the suppression of the CO state, Both the competition between the CO/AFM and FM states and the core-shell model are employed to explain the variation of the FM phase. These results may provide a deeper insight into the physics of particle size effect on the charge ordering manganite.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Anew class of bifunctional architecture combining the useful functions of superparamagnetism and terbium complex luminescence into one material has been prepared via two main steps by a modified Stober method and the layer-by-layer (LbL) assembly technique. The obtained bifunctional nanocomposites exhibit superparamagnetic behavior, high fluorescence intensity, and color purity. The architecture has been characterized by field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), UV-vis absorption and emission spectroscopy, X-ray diffraction, and superconducting quantum interference device (SQUID) magnetometry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Magnetic and conductive NiZn ferrite-polyaniline nanocomposites with novel core-shell structure have been fabricated by microemulsion process. The samples were characterized by XRD, TEM, SEM, IR, UV-vis, voltage/current detector and SQUID magnetometry. The core-shell structure of nanocomposites was observed by TEM. The changes of the magnetic and conductive properties after polyaniline coating were investigated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We here present a versatile process for the preparation of maghemite/polyaniline (gamma-Fe2O3/ PAn) nanocomposite films with macroscopic processibility, electrical conductivity, and magnetic susceptibility. The gamma-Fe2O3 nanoparticles are coated and the PAn chains are doped by anionic surfactants of omega-methoxypoly(ethylene glycol) phosphate (PEOPA), 4-dodecylbenzenesulfonic acid (DBSA), and 10-camphorsulfonic acid (CSA). Both the coated gamma-Fe2O3 and the doped PAn are soluble in common organic solvents, and casting of the homogeneous solutions gives free-standing nanocomposite films with gamma-Fe2O3 contents up to similar to 50 wt %. The morphology of the gamma-Fe2O3 nanoparticles are characterized by transmission electron microscopy, UV-vis spectroscopy, and X-ray diffractometry. The gamma-Fe2O3/PAn films prepared from chloroform/m-cresol solutions of DBSA-coated gamma-Fe2O3 and CSA-doped PAn are conductive (sigma = 82-237 S/cm) and superpapamagnetic, exhibiting no hysteresis at room temperature. The zero-field-cooled magnetization experiment reveals that the nanocomposite containing 20.8 wt % gamma-Fe2O3 has a blocking temperature (T-b) in the temperature region of 63-83 K.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hydrocarbon nanoparticles with diameters between 10 and 30 nanometres are created in a low pressure plasma combining capacitive and inductive power coupling. The particles are generated in the capacitive phase of the experiment and stay confined in the plasma in the inductive phase. The presence of these embedded particles induces a rotation of a particle-free region (void) around the symmetry axis of the reactor. The phenomenon is analysed using optical emission spectroscopy both line integrated and spatially resolved via an intensified charge coupled device camera. From these data, electron temperatures and densities are deduced. We find that the rotation of the void is driven by a tangential component of the ion drag force induced by an external static magnetic field. Two modes are observed: a fast rotation of the void in the direction opposite to that of the tangential component and a slow rotation in the same direction. The rotation speed decreases linearly with the size of the particles. In the fast mode the dependence on the applied magnetic field is weak and consequently the rotation speed can serve as a monitor to detect particle sizes in low temperature plasmas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanoparticles of ZnO with the wurtzite structure have been successfully synthesized via a microwave through the decomposition of zinc acetate dihydrate in an ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, as a solvent. Fundamental characterizations including X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) were conducted for the ZnO nanostructures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Here we report an example of a mixed thiol monolayer on the surface of Ag nanoparticles which promotes adsorption and quantitative SERS detection of 3,4-methylenedioxymethamphetamine (MDMA, “Ecstasy”); the thiols in the mixed monolayers act synergistically since MDMA does not adsorb onto colloids modified with either of the thiols separately.