952 resultados para Macroinvertebrates Taxonomy Sufficiency
Resumo:
Much has been written in the educational psychology literature about effective feedback and how to deliver it. However, it is equally important to understand how learners actively receive, engage with, and implement feedback. This article reports a systematic review of the research evidence pertaining to this issue. Through an analysis of 195 outputs published between 1985 and early 2014, we identified various factors that have been proposed to influence the likelihood of feedback being used. Furthermore, we identified diverse interventions with the common aim of supporting and promoting learners' agentic engagement with feedback processes. We outline the various components used in these interventions, and the reports of their successes and limitations. Moreover we propose a novel taxonomy of four recipience processes targeted by these interventions. This review and taxonomy provide a theoretical basis for conceptualizing learners' responsibility within feedback dialogues and for guiding the strategic design and evaluation of interventions. Receiving feedback on one's skills and understanding is an invaluable part of the learning process, benefiting learners far more than does simply receiving praise or punishment (Black & Wiliam, 1998 Black, P., & Wiliam, D. (1998). Assessment and classroom learning. Assessment in Education: Principles, Policy & Practice, 5, 7–74. doi:10.1080/0969595980050102[Taylor & Francis Online]; Hattie & Timperley, 2007 Hattie, J., & Timperley, H. (2007). The power of feedback. Review of Educational Research, 77, 81–112. doi:10.3102/003465430298487[CrossRef], [Web of Science ®]). Inevitably, the benefits of receiving feedback are not uniform across all circumstances, and so it is imperative to understand how these gains can be maximized. There is increasing consensus that a critical determinant of feedback effectiveness is the quality of learners' engagement with, and use of, the feedback they receive. However, studies investigating this engagement are underrepresented in academic research (Bounds et al., 2013 Bounds, R., Bush, C., Aghera, A., Rodriguez, N., Stansfield, R. B., & Santeen, S. A. (2013). Emergency medicine residents' self-assessments play a critical role when receiving feedback. Academic Emergency Medicine, 20, 1055–1061. doi:10.1111/acem.12231[CrossRef], [PubMed], [Web of Science ®]), which leaves a “blind spot” in our understanding (Burke, 2009 Burke, D. (2009). Strategies for using feedback students bring to higher education. Assessment & Evaluation in Higher Education, 34, 41–50. doi:10.1080/02602930801895711[Taylor & Francis Online], [Web of Science ®]). With this blind spot in mind, the present work sets out to systematically map the research literature concerning learners' proactive recipience of feedback. We use the term “proactive recipience” here to connote a state or activity of engaging actively with feedback processes, thus emphasizing the fundamental contribution and responsibility of the learner (Winstone, Nash, Rowntree, & Parker, in press Winstone, N. E., Nash, R. A., Rowntree, J., & Parker, M. (in press). ‘It'd be useful, but I wouldn't use it’: Barriers to university students' feedback seeking and recipience. Studies in Higher Education. doi: 10.1080/03075079.2015.1130032[Taylor & Francis Online]). In other words, just as Reeve and Tseng (2011 Reeve, J., & Tseng, M. (2011). Agency as a fourth aspect of student engagement during learning activities. Contemporary Educational Psychology, 36, 257–267. doi:10.1016/j.cedpsych.2011.05.002[CrossRef], [Web of Science ®]) defined “agentic engagement” as a “student's constructive contribution into the flow of the instruction they receive” (p. 258), likewise proactive recipience is a form of agentic engagement that involves the learner sharing responsibility for making feedback processes effective.
Resumo:
Calcareous floating periphyton mats in the southern Everglades provide habitat for a diverse macroinvertebrate community that has not been well characterized. Our study described this community in an oligotrophic marsh, compared it with the macroinvertebrate community associated with adjacent epiphytic algae attached to macrophytes in the water column, and detected spatial patterns in density and community structure. The floating periphyton mat (floating mat) and epiphytic algae in the water column (submerged epiphyton) were sampled at 4 sites (1 km apart) in northern Shark River Slough, Everglades National Park (ENP), in the early (July) and late (November) wet season. Two perpendicular 90-m transects were established at each site and 100 samples were taken in a nested design. Sites were located in wet-prairie spikerush-dominated sloughs with similar water depths and emergent macrophyte communities. Floating mats were sampled by taking cores (6-cm diameter) that were sorted under magnification to enumerate infauna retained on a 250-μm-mesh sieve and with a maximum dimension >1 mm. Our results showed that floating mats provide habitat for a macroinvertebrate community with higher densities (no. animals/g ash-free dry mass) of Hyalella azteca, Dasyhelea spp., and Cladocera, and lower densities of Chironomidae and Planorbella spp. than communities associated with submerged epiphyton. Densities of the most common taxa increased 3× to 15× from early to late wet season, and community differences between the 2 habitat types became more pronounced. Floating-mat coverage and estimated floating-mat biomass increased 20 to 30% and 30 to 110%, respectively, at most sites in the late wet season. Some intersite variation was observed in individual taxa, but no consistent spatial pattern in any taxon was detected at any scale (from 0.2 m to 3 km). Floating mats and their resident macroinvertebrate communities are important components in the Everglades food web. This community should be included in environmental monitoring programs because degradation and eventual loss of the calcareous periphyton mat is associated with P enrichment in this ecosystem.
Resumo:
Located at a subtropical latitude, the expansive Florida Everglades contains a mixture of tropical and temperate diatom taxa, as well as a unique flora adapted to the calcareous, often excessively hot, seasonally flooded wetland conditions. This flora has been poorly documented taxonomically, although diatoms are recognized as important indicators of environmental change in this threatened ecosystem. Gomphonema is a dominant genus in the freshwater marsh, and is represented by highly variable species complexes, including Gomphonema gracile Ehrenberg, Gomphonema intricatum var. vibrio Ehrenberg sensu Fricke, Gomphonema vibrioides Reichardt & Lange-Bertalot and Gomphonema parvulum (Kützing) Grunow. These taxa have been shown to exhibit wide morphological variation in other regions, resulting in considerable nomenclatural confusion. We collected Gomphonema from 237 sites distributed throughout the freshwater Everglades and used qualitative and quantitative morphological data to identify 20 distinguishable populations. Taxonomie assignments were based on descriptions and/or observations of type material of relevant taxa when possible, but deviations from original morphological range descriptions were common. We then compared morphological variation in Everglades Gomphonema taxa to that reported for the same taxa in other regions and suggest revisions of taxonomie concepts when necessary.
Resumo:
1. The roles of nutrients, disturbance and predation in regulating consumer densities have long been of interest, but their indirect effects have rarely been quantified in wetland ecosystems. The Florida Everglades contains gradients of hydrological disturbance (marsh drying) and nutrient enrichment (phosphorus), often correlated with densities of macroinvertebrate infauna (macroinvertebrates inhabiting periphyton), small fish and larger invertebrates, such as snails, grass shrimp, insects and crayfish. However, most causal relationships have yet to be quantified. 2. We sampled periphyton (content and community structure) and consumer (small omnivores, carnivores and herbivores, and infaunal macroinvertebrates inhabiting periphyton) density at 28 sites spanning a range of hydrological and nutrient conditions and compared our data to seven a priori structural equation models. 3. The best model included bottom-up and top-down effects among trophic groups and supported top-down control of infauna by omnivores and predators that cascaded to periphyton biomass. The next best model included bottom-up paths only and allowed direct effects of periphyton on omnivore density. Both models suggested a positive relationship between small herbivores and small omnivores, indicating that predation was unable to limit herbivore numbers. Total effects of time following flooding were negative for all three consumer groups even when both preferred models suggested positive direct effects for some groups. Total effects of nutrient levels (phosphorus) were positive for consumers and generally larger than those of hydrological disturbance and were mediated by changes in periphyton content. 4. Our findings provide quantitative support for indirect effects of nutrient enrichment on consumers, and the importance of both algal community structure and periphyton biomass to Everglades food webs. Evidence for top-down control of infauna by omnivores was noted, though without substantially greater support than a competing bottom-up-only model.
Resumo:
Acknowledgements This research was funded by the MRC via its Methodology Panel: ‘Strengthening evaluation and implementation by specifying components of behaviour change interventions’ Ref: G0901474/1. We thank the participants who took part in the studies that form this research. We also thank Derek Johnston (Emeritus Professor, University of Aberdeen) for his guidance on statistical analyses.
Resumo:
Date of Acceptance: 30/8/15 Acknowledgements We thank the chief scientists, crew and company of the Japanese RV Hakuho-Maru (KH0703 and KH0803), the RV Tansei-Maru (KT-09-03), the RV Kairei (KR0716), the German FS Sonne (SO197 and SO 209) and the New Zealand RV Kaharoa (KAH0190, KAH1109, KAH1202, KAH1301 and KAH1310). This work was supported by the HADEEP projects, funded by the Nippon Foundation, Japan (2009765188), the Natural Environmental Research Council, UK (NE/E007171/1) and the Total Foundation, France. We acknowledge additional support from the Marine Alliance for Science and Technology for Scotland (MASTS) funded by the Scottish Funding Council (Ref: HR09011) and contributing institutions. We also acknowledge support from the Leverhulme Research Fellowship granted to SBP. Additional sea time was supported by NIWA’s ‘Impact of Resource Use on Vulnerable Deep-Sea Communities’ project (CO1_0906). From NIWA we thank Malcolm Clark, Ashley Rowden, Kareen Schnabel, Sadie Mills for logistical support at the NIWA Invertebrate Collection. We also thank Fredrik Søreide from Promare, USA, for supply of the Puerto-Rico samples, Marius Wenzel for helpful comments on manuscript drafts, and Dr. Tammy Horton (NOCS, UK) for identifying some of the earlier amphipod samples
Resumo:
Photosynthetic eukaryotes have a critical role as the main producers in most ecosystems of the biosphere. The ongoing environmental metabarcoding revolution opens the perspective for holistic ecosystems biological studies of these organisms, in particular the unicellular microalgae that often lack distinctive morphological characters and have complex life cycles. To interpret environmental sequences, metabarcoding necessarily relies on taxonomically curated databases containing reference sequences of the targeted gene (or barcode) from identified organisms. To date, no such reference framework exists for photosynthetic eukaryotes. In this study, we built the PhytoREF database that contains 6490 plastidial 16S rDNA reference sequences that originate from a large diversity of eukaryotes representing all known major photosynthetic lineages. We compiled 3333 amplicon sequences available from public databases and 879 sequences extracted from plastidial genomes, and generated 411 novel sequences from cultured marine microalgal strains belonging to different eukaryotic lineages. A total of 1867 environmental Sanger 16S rDNA sequences were also included in the database. Stringent quality filtering and a phylogeny-based taxonomic classification were applied for each 16S rDNA sequence. The database mainly focuses on marine microalgae, but sequences from land plants (representing half of the PhytoREF sequences) and freshwater taxa were also included to broaden the applicability of PhytoREF to different aquatic and terrestrial habitats. PhytoREF, accessible via a web interface (http://phytoref.fr), is a new resource in molecular ecology to foster the discovery, assessment and monitoring of the diversity of photosynthetic eukaryotes using high-throughput sequencing.
Resumo:
Photosynthetic eukaryotes have a critical role as the main producers in most ecosystems of the biosphere. The ongoing environmental metabarcoding revolution opens the perspective for holistic ecosystems biological studies of these organisms, in particular the unicellular microalgae that often lack distinctive morphological characters and have complex life cycles. To interpret environmental sequences, metabarcoding necessarily relies on taxonomically curated databases containing reference sequences of the targeted gene (or barcode) from identified organisms. To date, no such reference framework exists for photosynthetic eukaryotes. In this study, we built the PhytoREF database that contains 6490 plastidial 16S rDNA reference sequences that originate from a large diversity of eukaryotes representing all known major photosynthetic lineages. We compiled 3333 amplicon sequences available from public databases and 879 sequences extracted from plastidial genomes, and generated 411 novel sequences from cultured marine microalgal strains belonging to different eukaryotic lineages. A total of 1867 environmental Sanger 16S rDNA sequences were also included in the database. Stringent quality filtering and a phylogeny-based taxonomic classification were applied for each 16S rDNA sequence. The database mainly focuses on marine microalgae, but sequences from land plants (representing half of the PhytoREF sequences) and freshwater taxa were also included to broaden the applicability of PhytoREF to different aquatic and terrestrial habitats. PhytoREF, accessible via a web interface (http://phytoref.fr), is a new resource in molecular ecology to foster the discovery, assessment and monitoring of the diversity of photosynthetic eukaryotes using high-throughput sequencing.
Resumo:
CMFRI,
Resumo:
County engineers in Iowa face the dual problems of rapidly escalating costs and a decreasing rate of growth of revenues. Various priority systems are in use, ranking projects for inclusion in road improvement programs, but they generally have weaknesses when used to compare one project with another in a different location. The sufficiency rating system has proven to be a useful tool in developing a priority list of projects for primary road systems, but there are none currently in use for secondary road systems. Some elements of an existing system used for primary roads could be modified for use with secondary roads, but would require extensive changes. The research reported here, sponsored by the Iowa Department of Transportation, was undertaken to develop a sufficiency rating system which could be used for secondary roads in Iowa and to produce the necessary forms and instructions to aid county engineering personnel in their efforts to complete the ratings for roads within their county. If a usable system were available that would yield reasonable results, county engineers would have an additional tool available to assist them in arriving at a defensible road improvement program.
Resumo:
The benefits of pavement management system when fully implemented are well known and the history of successful implementation is rich. Implementation occurs, for purposes of this paper, when the pavement management system is the critical component for making pavement decisions. This paper addresses the issues that act as barriers to full implementation of pavement management systems. Institutional barriers, not technical and financial barriers, are more commonly responsible for a pavement management systems falling short of full implementation. The paper groups these institutional issues into a general taxonomy. In general, more effort needs to be put forth by highway agencies to overcome institutional issues. Most agencies approach pavement management as a technical process, but more commonly, institutional issues become more problematic and thus require more attention paid to institutional issues. The paper concludes by summarizing the implementation process being taken by the Iowa Department of Transportation. The process was designed to overcome institutional barriers and facilitate the complete and full implementation of their pavement management system.
Resumo:
Considerable attention has been paid to the potentially confounding effects of geological and seasonal variation on outputs from bioassessments in temperate streams, but our understanding about these influences is limited for many tropical systems. We explored variation in macroinvertebrate assemblage composition and the environmental characteristics of 3rd- to 5th-order streams in a geologically heterogeneous tropical landscape in the wet and dry seasons. Study streams drained catchments with land cover ranging from predominantly forested to agricultural land, but data indicated that distinct water-chemistry and substratum conditions associated with predominantly calcareous and silicate geologies were key determinants of macroinvertebrate assemblage composition. Most notably, calcareous streams were characterized by a relatively abundant noninsect fauna, particularly a pachychilid gastropod snail. The association between geological variation and assemblage composition was apparent during both seasons, but significant temporal variation in compositional characteristics was detected only in calcareous streams, possibly because of limited statistical power to detect change at silicate sites, or the limited extent of our temporal data. We discuss the implications of our findings for tropical bioassessment programs. Our key findings suggest that geology can be an important determinant of macroinvertebrate assemblages in tropical streams and that geological heterogeneity may influence the scale of temporal response in characteristic macroinvertebrate assemblages.