297 resultados para Macrocyclic Polyethers
Resumo:
A series of simple copper N(2)S(2) macrocycles were examined for their potential as biological redox sensors, following previous characterization of their redox potentials and crystal structures. The divalent species were reduced by glutathione or ascorbate at a biologically relevant pH in aqueous buffer. A less efficient reduction was also achieved by vitamin E in DMSO. Oxidation of the corresponding univalent copper species by sodium hypochlorite resulted in only partial (~65 %) recovery of the divalent form. This was concluded to be due to competition between metal oxidation and ligand oxidation, which is believed to contribute to macrocycle demetallation. Electrospray mass spectrometry confirmed that ligand oxidation had occurred. Moreover, the macrocyclic complexes could be demetallated by incubation with EDTA and bovine serum albumin, demonstrating that they would be inappropriate for use in biological systems. The susceptibility to oxidation and demetallation was hypothesized to be due to oxidation of the secondary amines. Consequently these were modified to incorporate additional oxygen donor atoms. This modification led to greater resistance to demetallation and ligand oxidation, providing a better platform for further development of copper macrocycles as redox sensors for use in biological systems.
Resumo:
This thesis is concerned with the investigation of transition metal (TM) ion complexation with hydrophilic membranes composed of copolymers of 4-vinyl pyridine & 4-methyl-4'vinyl- 2,2'-bipyridine with 2-hydroxyethyl methacrylate. The Cu(II), CoCII) & Fe(II) complexes with these coordinating membranes were characterised by a variety of techniques, in order to assess the effect of the polymer on the properties of the complex, and vice versa. A detailed programme of work was instigated into the kinetics of formation for the polymer-bound tris(bipyridyl) iron(II) complex; the rate and extent of complex formation was found to be anion-dependent. This is explained in terms of the influence of the anion on the transport properties and water content of the membrane, the controlling factor in the development of the tris-complex being the equilibrium concentration of Fe(II) in the gel matrix. A series of transport studies were performed with a view to the potential application of complexing hydrogel membranes for aqueous TM ion separations. A number of salts were studied individually and shown to possess a range of permeabilities; the degree of interaction between particular metal-ion:ligand combinations is given by the lag-time observed before steady-state permeation is achieved. However, when two TM salts that individually display different transport properties were studied in combination, they showed similar lag-times & permeabilities, characteristic of the more strongly coordinating metal ion. This 'anti-selective' nature thus renders the membrane systems unsuitable for TM ion separations. Finally, attempts were made to synthesise and immobilise a series of N ,0-donor macrocyclic ligands into hydrogel membranes. Although the functionalisation reactions failed, limited transport data was obtained from membranes in which the ligands were physically entrapped within the polymer matrix.
Resumo:
This book commemorates the 25th anniversary of the International Izatt-Christensen Award in Macrocyclic and Supramolecular Chemistry. The award, one of the most prestigious of small awards in chemistry, recognizes excellence in the developing field of macrocyclic and supramolecular chemistry
Macrocyclic and Supramolecular Chemistry: How Izatt-Christensen Award Winners Shaped the Field features chapters written by the award recipients who provide unique perspectives on the spectacular growth in these expanding and vibrant fields of chemistry over the past half century, and on the role of these awardees in shaping this growth. During this time there has been an upsurge of interest in the design, synthesis and characterization of increasingly more complex macrocyclic ligands and in the application of this knowledge to understanding molecular recognition processes in host-guest chemistry in ways that were scarcely envisioned decades earlier.
Resumo:
Les macrolactones sont des squelettes structuraux importants dans de nombreuses sphères de l’industrie chimique, en particulier dans les marchés pharmaceutiques et cosmétiques. Toutefois, la stratégie traditionnelle pour la préparation de macrolactones demeure incommode en requérant notamment l’ajout (super)stœchiométrique d’agents activateurs. Conséquemment, des quantités stœchiométriques de sous-produits sont générées; ils sont souvent toxiques, dommageables pour l’environnement et nécessitent des méthodes de purification fastidieuses afin de les éliminer. La présente thèse décrit le développement d’une macrolactonisation efficace catalysée au hafnium directement à partir de précurseurs portant un acide carboxylique et un alcool primaire, ne générant que de l’eau comme sous-produit et ne nécessitant pas de techniques d’addition lente et/ou azéotropique. Le protocole a également été adapté à la synthèse directe de macrodiolides à partir de mélanges équimolaires de diols et de diacides carboxyliques et à la synthèse de dimères tête-à-queue de seco acides. Des muscs macrocycliques ainsi que des macrolactones pertinentes à la chimie médicinale ont pu être synthétisés avec l’approche développée. Un protocole pour l’estérification directe catalysée au hafnium entre des acides carboxyliques et des alcools primaires a aussi été développé. Différentes méthodes pour la macrolactonisation catalytique directe entre des alcools secondaires et des acides carboxyliques ont été étudiées. En outre, la stratégie de séparation de phase en macrocyclisation en débit continu a été appliquée lors de la synthèse totale formelle de la macrolactone ivorenolide A. Les étapes-clés de la synthèse incluent une macrocyclisation par le couplage d’alcynes de Glaser-Hay et une réaction de métathèse d’alcènes Z-sélective.
Resumo:
The interaction of 4-nerolidylcatechol (4-NRC), a potent antioxidant agent, and 2-hydroxypropyl-beta-cyclodextrin (HP-beta-CD) was investigated by the solubility method using Fourier transform infrared (FTIR) methods in addition to UV-Vis, (1)H-nuclear magnetic resonance (NMR) spectroscopy and molecular modeling. The inclusion complexes were prepared using grinding, kneading and freeze-drying methods. According to phase solubility studies in water a B(S)-type diagram was found, displaying a stoichiometry complexation of 2:1 (drug:host) and stability constant of 6494 +/- A 837 M(-1). Stoichiometry was established by the UV spectrophotometer using Job's plot method and, also confirmed by molecular modeling. Data from (1)H-NMR, and FTIR, experiments also provided formation evidence of an inclusion complex between 4-NRC and HP-beta-CD. 4-NRC complexation indeed led to higher drug solubility and stability which could probably be useful to improve its biological properties and make it available to oral administration and topical formulations.
Resumo:
Les macrolactones sont des squelettes structuraux importants dans de nombreuses sphères de l’industrie chimique, en particulier dans les marchés pharmaceutiques et cosmétiques. Toutefois, la stratégie traditionnelle pour la préparation de macrolactones demeure incommode en requérant notamment l’ajout (super)stœchiométrique d’agents activateurs. Conséquemment, des quantités stœchiométriques de sous-produits sont générées; ils sont souvent toxiques, dommageables pour l’environnement et nécessitent des méthodes de purification fastidieuses afin de les éliminer. La présente thèse décrit le développement d’une macrolactonisation efficace catalysée au hafnium directement à partir de précurseurs portant un acide carboxylique et un alcool primaire, ne générant que de l’eau comme sous-produit et ne nécessitant pas de techniques d’addition lente et/ou azéotropique. Le protocole a également été adapté à la synthèse directe de macrodiolides à partir de mélanges équimolaires de diols et de diacides carboxyliques et à la synthèse de dimères tête-à-queue de seco acides. Des muscs macrocycliques ainsi que des macrolactones pertinentes à la chimie médicinale ont pu être synthétisés avec l’approche développée. Un protocole pour l’estérification directe catalysée au hafnium entre des acides carboxyliques et des alcools primaires a aussi été développé. Différentes méthodes pour la macrolactonisation catalytique directe entre des alcools secondaires et des acides carboxyliques ont été étudiées. En outre, la stratégie de séparation de phase en macrocyclisation en débit continu a été appliquée lors de la synthèse totale formelle de la macrolactone ivorenolide A. Les étapes-clés de la synthèse incluent une macrocyclisation par le couplage d’alcynes de Glaser-Hay et une réaction de métathèse d’alcènes Z-sélective.
Resumo:
Schistosomiasis is still an endemic disease in many regions, with 250 million people infected with Schistosoma and about 500,000 deaths per year. Praziquantel (PZQ) is the drug of choice for schistosomiasis treatment, however it is classified as Class II in the Biopharmaceutics Classification System, as its low solubility hinders its performance in biological systems. The use of cyclodextrins is a useful tool to increase the solubility and bioavailability of drugs. The aim of this work was to prepare an inclusion compound of PZQ and methyl-beta-cyclodextrin (MeCD), perform its physico-chemical characterization, and explore its in vitro cytotoxicity. SEM showed a change of the morphological characteristics of PZQ:MeCD crystals, and IR data supported this finding, with changes after interaction with MeCD including effects on the C-H of the aromatic ring, observed at 758 cm(-1). Differential scanning calorimetry measurements revealed that complexation occurred in a 1:1 molar ratio, as evidenced by the lack of a PZQ transition temperature after inclusion into the MeCD cavity. In solution, the PZQ UV spectrum profile in the presence of MeCD was comparable to the PZQ spectrum in a hydrophobic solvent. Phase solubility diagrams showed that there was a 5.5-fold increase in PZQ solubility, and were indicative of a type A(L) isotherm, that was used to determine an association constant (K(a)) of 140.8 M(-1). No cytotoxicity of the PZQ:MeCD inclusion compound was observed in tests using 3T3 cells. The results suggest that the association of PZQ with MeCD could be a good alternative for the treatment of schistosomiasis.
Resumo:
Poster presented at the “From Basic Sciences to Clinical Research” – First International Congress of CiiEM. Egas Moniz, Caparica, Portugal, 27-28 November 2015
Resumo:
Nucleobase-functionalized polymers are widely used in the fields of supramolecular chemistry and self-assembly, and their development for biomedical applications is also an area of interest. They are usually synthesized by tedious multistep procedures. In this study, we assess adenine as an organoinitiator/ organocatalyst for the ring-opening polymerization of lactide. L-Lactide can be quantitatively polymerized in the presence of adenine. Reaction conditions involving short reaction times and relatively low temperatures enable the access to adenine end-capped polylactide in a simple one-step procedure, in bulk, without additional catalyst. DFT calculations show that the polymerization occurs via hydrogen bond catalysis. The mechanism involves (i) a hydrogen bond between the NH9 of adenine and the carbonyl moiety of lactide, leading to an electron deficient carbon atom, and (ii) a second hydrogen bond between the N3 of adenine and the NH2 of a second adenine molecule, followed by a nucleophilic attack of the latter activated amine on the former electron deficient carbon on the monomer. For longer reaction times and higher temperatures, macrocyclic species are formed, and a mechanism involving the imidazole ring of adenine is proposed based on literature studies. Depending on the reaction conditions, adenine can thus be considered as an organoinitiator or an organocatalyst for the ring-opening polymerization of lactide.
Resumo:
Nucleobase-functionalized polymers are widely used in the fields of supramolecular chemistry and self-assembly, and their development for biomedical applications is also an area of interest. They are usually synthesized by tedious multistep procedures. In this study, we assess adenine as an organoinitiator/organocatalyst for the ring-opening polymerization of lactide. L-Lactide can be quantitatively polymerized in the presence of adenine. Reaction conditions involving short reaction times and relatively low temperatures enable the access to adenine end-capped polylactide in a simple one-step procedure, in bulk, without additional catalyst. DFT calculations show that the polymerization occurs via hydrogen bond catalysis. The mechanism involves (i) a hydrogen bond between the NH9 of adenine and the carbonyl moiety of lactide, leading to an electron deficient carbon atom, and (ii) a second hydrogen bond between the N3 of adenine and the NH2 of a second adenine molecule, followed by a nucleophilic attack of the latter activated amine on the former electron deficient carbon on the monomer. For longer reaction times and higher temperatures, macrocyclic species are formed, and a mechanism involving the imidazole ring of adenine is proposed based on literature studies. Depending on the reaction conditions, adenine can thus be considered as an organoinitiator or an organocatalyst for the ring-opening polymerization of lactide.
Resumo:
In 2017, Chronic Respiratory Diseases accounted for almost four million deaths worldwide. Unfortunately, current treatments are not definitive for such diseases. This unmet medical need forces the scientific community to increase efforts in the identification of new therapeutic solutions. PI3K delta plays a key role in mechanisms that promote airway chronic inflammation underlying Asthma and COPD. The first part of this project was dedicated to the identification of novel PI3K delta inhibitors. A first SAR expansion of a Hit, previously identified by a HTS campaign, was carried out. A library of 43 analogues was synthesised taking advantage of an efficient synthetic approach. This allowed the identification of an improved Hit of nanomolar enzymatic potency and moderate selectivity for PI3K delta over other PI3K isoforms. However, this compound exhibited low potency in cell-based assays. Low cellular potency was related to sub optimal phys-chem and ADME properties. The analysis of the X-ray crystal structure of this compound in human PI3K delta guided a second tailored SAR expansion that led to improved cellular potency and solubility. The second part of the thesis was focused on the rational design and synthesis of new macrocyclic Rho-associated protein kinases (ROCKs) inhibitors. Inhibition of these kinases has been associated with vasodilating effects. Therefore, ROCKs could represent attractive targets for the treatment of pulmonary arterial hypertension (PAH). Known ROCK inhibitors suffer from low selectivity across the kinome. The design of macrocyclic inhibitors was considered a promising strategy to obtain improved selectivity. Known inhibitors from literature were evaluated for opportunities of macrocyclization using a knowledge-based approach supported by Computer Aided Drug Design (CADD). The identification of a macrocyclic ROCK inhibitor with enzymatic activity in the low micro molar range against ROCK II represented a promising result that validated this innovative approach in the design of new ROCKs inhibitors.